New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralrab2 | GIF version |
Description: Universal quantification over a restricted class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
ralab2.1 | ⊢ (x = y → (ψ ↔ χ)) |
Ref | Expression |
---|---|
ralrab2 | ⊢ (∀x ∈ {y ∈ A ∣ φ}ψ ↔ ∀y ∈ A (φ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2624 | . . 3 ⊢ {y ∈ A ∣ φ} = {y ∣ (y ∈ A ∧ φ)} | |
2 | 1 | raleqi 2812 | . 2 ⊢ (∀x ∈ {y ∈ A ∣ φ}ψ ↔ ∀x ∈ {y ∣ (y ∈ A ∧ φ)}ψ) |
3 | ralab2.1 | . . 3 ⊢ (x = y → (ψ ↔ χ)) | |
4 | 3 | ralab2 3002 | . 2 ⊢ (∀x ∈ {y ∣ (y ∈ A ∧ φ)}ψ ↔ ∀y((y ∈ A ∧ φ) → χ)) |
5 | impexp 433 | . . . 4 ⊢ (((y ∈ A ∧ φ) → χ) ↔ (y ∈ A → (φ → χ))) | |
6 | 5 | albii 1566 | . . 3 ⊢ (∀y((y ∈ A ∧ φ) → χ) ↔ ∀y(y ∈ A → (φ → χ))) |
7 | df-ral 2620 | . . 3 ⊢ (∀y ∈ A (φ → χ) ↔ ∀y(y ∈ A → (φ → χ))) | |
8 | 6, 7 | bitr4i 243 | . 2 ⊢ (∀y((y ∈ A ∧ φ) → χ) ↔ ∀y ∈ A (φ → χ)) |
9 | 2, 4, 8 | 3bitri 262 | 1 ⊢ (∀x ∈ {y ∈ A ∣ φ}ψ ↔ ∀y ∈ A (φ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∈ wcel 1710 {cab 2339 ∀wral 2615 {crab 2619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rab 2624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |