| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > raleqi | GIF version | ||
| Description: Equality inference for restricted universal qualifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| raleq1i.1 | ⊢ A = B |
| Ref | Expression |
|---|---|
| raleqi | ⊢ (∀x ∈ A φ ↔ ∀x ∈ B φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 | . 2 ⊢ A = B | |
| 2 | raleq 2808 | . 2 ⊢ (A = B → (∀x ∈ A φ ↔ ∀x ∈ B φ)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀x ∈ A φ ↔ ∀x ∈ B φ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 = wceq 1642 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 |
| This theorem is referenced by: ralrab2 3003 ralprg 3776 raltpg 3778 ssofss 4077 ralxp 4826 |
| Copyright terms: Public domain | W3C validator |