| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > ralrimd | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004.) | 
| Ref | Expression | 
|---|---|
| ralrimd.1 | ⊢ Ⅎxφ | 
| ralrimd.2 | ⊢ Ⅎxψ | 
| ralrimd.3 | ⊢ (φ → (ψ → (x ∈ A → χ))) | 
| Ref | Expression | 
|---|---|
| ralrimd | ⊢ (φ → (ψ → ∀x ∈ A χ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralrimd.1 | . . 3 ⊢ Ⅎxφ | |
| 2 | ralrimd.2 | . . 3 ⊢ Ⅎxψ | |
| 3 | ralrimd.3 | . . 3 ⊢ (φ → (ψ → (x ∈ A → χ))) | |
| 4 | 1, 2, 3 | alrimd 1769 | . 2 ⊢ (φ → (ψ → ∀x(x ∈ A → χ))) | 
| 5 | df-ral 2620 | . 2 ⊢ (∀x ∈ A χ ↔ ∀x(x ∈ A → χ)) | |
| 6 | 4, 5 | syl6ibr 218 | 1 ⊢ (φ → (ψ → ∀x ∈ A χ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1544 ∈ wcel 1710 ∀wral 2615 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-ral 2620 | 
| This theorem is referenced by: ralrimdv 2704 ncfinraise 4482 | 
| Copyright terms: Public domain | W3C validator |