New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralrimd | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004.) |
Ref | Expression |
---|---|
ralrimd.1 | ⊢ Ⅎxφ |
ralrimd.2 | ⊢ Ⅎxψ |
ralrimd.3 | ⊢ (φ → (ψ → (x ∈ A → χ))) |
Ref | Expression |
---|---|
ralrimd | ⊢ (φ → (ψ → ∀x ∈ A χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimd.1 | . . 3 ⊢ Ⅎxφ | |
2 | ralrimd.2 | . . 3 ⊢ Ⅎxψ | |
3 | ralrimd.3 | . . 3 ⊢ (φ → (ψ → (x ∈ A → χ))) | |
4 | 1, 2, 3 | alrimd 1769 | . 2 ⊢ (φ → (ψ → ∀x(x ∈ A → χ))) |
5 | df-ral 2619 | . 2 ⊢ (∀x ∈ A χ ↔ ∀x(x ∈ A → χ)) | |
6 | 4, 5 | syl6ibr 218 | 1 ⊢ (φ → (ψ → ∀x ∈ A χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1544 ∈ wcel 1710 ∀wral 2614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-ral 2619 |
This theorem is referenced by: ralrimdv 2703 ncfinraise 4481 |
Copyright terms: Public domain | W3C validator |