NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ralrimdv GIF version

Theorem ralrimdv 2704
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.)
Hypothesis
Ref Expression
ralrimdv.1 (φ → (ψ → (x Aχ)))
Assertion
Ref Expression
ralrimdv (φ → (ψx A χ))
Distinct variable groups:   φ,x   ψ,x
Allowed substitution hints:   χ(x)   A(x)

Proof of Theorem ralrimdv
StepHypRef Expression
1 nfv 1619 . 2 xφ
2 nfv 1619 . 2 xψ
3 ralrimdv.1 . 2 (φ → (ψ → (x Aχ)))
41, 2, 3ralrimd 2703 1 (φ → (ψx A χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545  df-ral 2620
This theorem is referenced by:  ralrimdva  2705  ralrimivv  2706  nndisjeq  4430  trrd  5926
  Copyright terms: Public domain W3C validator