| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > ralrimdv | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) | 
| Ref | Expression | 
|---|---|
| ralrimdv.1 | ⊢ (φ → (ψ → (x ∈ A → χ))) | 
| Ref | Expression | 
|---|---|
| ralrimdv | ⊢ (φ → (ψ → ∀x ∈ A χ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1619 | . 2 ⊢ Ⅎxφ | |
| 2 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
| 3 | ralrimdv.1 | . 2 ⊢ (φ → (ψ → (x ∈ A → χ))) | |
| 4 | 1, 2, 3 | ralrimd 2703 | 1 ⊢ (φ → (ψ → ∀x ∈ A χ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 1710 ∀wral 2615 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-ral 2620 | 
| This theorem is referenced by: ralrimdva 2705 ralrimivv 2706 nndisjeq 4430 trrd 5926 | 
| Copyright terms: Public domain | W3C validator |