New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralrimdv | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
ralrimdv.1 | ⊢ (φ → (ψ → (x ∈ A → χ))) |
Ref | Expression |
---|---|
ralrimdv | ⊢ (φ → (ψ → ∀x ∈ A χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxφ | |
2 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
3 | ralrimdv.1 | . 2 ⊢ (φ → (ψ → (x ∈ A → χ))) | |
4 | 1, 2, 3 | ralrimd 2703 | 1 ⊢ (φ → (ψ → ∀x ∈ A χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-ral 2620 |
This theorem is referenced by: ralrimdva 2705 ralrimivv 2706 nndisjeq 4430 trrd 5926 |
Copyright terms: Public domain | W3C validator |