NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexbid GIF version

Theorem rexbid 2634
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 27-Jun-1998.)
Hypotheses
Ref Expression
ralbid.1 xφ
ralbid.2 (φ → (ψχ))
Assertion
Ref Expression
rexbid (φ → (x A ψx A χ))

Proof of Theorem rexbid
StepHypRef Expression
1 ralbid.1 . 2 xφ
2 ralbid.2 . . 3 (φ → (ψχ))
32adantr 451 . 2 ((φ x A) → (ψχ))
41, 3rexbida 2630 1 (φ → (x A ψx A χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wnf 1544   wcel 1710  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-rex 2621
This theorem is referenced by:  rexbidv  2636
  Copyright terms: Public domain W3C validator