NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexbida GIF version

Theorem rexbida 2630
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 6-Oct-2003.)
Hypotheses
Ref Expression
ralbida.1 xφ
ralbida.2 ((φ x A) → (ψχ))
Assertion
Ref Expression
rexbida (φ → (x A ψx A χ))

Proof of Theorem rexbida
StepHypRef Expression
1 ralbida.1 . . 3 xφ
2 ralbida.2 . . . 4 ((φ x A) → (ψχ))
32pm5.32da 622 . . 3 (φ → ((x A ψ) ↔ (x A χ)))
41, 3exbid 1773 . 2 (φ → (x(x A ψ) ↔ x(x A χ)))
5 df-rex 2621 . 2 (x A ψx(x A ψ))
6 df-rex 2621 . 2 (x A χx(x A χ))
74, 5, 63bitr4g 279 1 (φ → (x A ψx A χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wex 1541  wnf 1544   wcel 1710  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-rex 2621
This theorem is referenced by:  rexbidva  2632  rexbid  2634  dfiun2g  4000  fun11iun  5306
  Copyright terms: Public domain W3C validator