| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rexbida | GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 6-Oct-2003.) |
| Ref | Expression |
|---|---|
| ralbida.1 | ⊢ Ⅎxφ |
| ralbida.2 | ⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| rexbida | ⊢ (φ → (∃x ∈ A ψ ↔ ∃x ∈ A χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbida.1 | . . 3 ⊢ Ⅎxφ | |
| 2 | ralbida.2 | . . . 4 ⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) | |
| 3 | 2 | pm5.32da 622 | . . 3 ⊢ (φ → ((x ∈ A ∧ ψ) ↔ (x ∈ A ∧ χ))) |
| 4 | 1, 3 | exbid 1773 | . 2 ⊢ (φ → (∃x(x ∈ A ∧ ψ) ↔ ∃x(x ∈ A ∧ χ))) |
| 5 | df-rex 2621 | . 2 ⊢ (∃x ∈ A ψ ↔ ∃x(x ∈ A ∧ ψ)) | |
| 6 | df-rex 2621 | . 2 ⊢ (∃x ∈ A χ ↔ ∃x(x ∈ A ∧ χ)) | |
| 7 | 4, 5, 6 | 3bitr4g 279 | 1 ⊢ (φ → (∃x ∈ A ψ ↔ ∃x ∈ A χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 ∈ wcel 1710 ∃wrex 2616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-rex 2621 |
| This theorem is referenced by: rexbidva 2632 rexbid 2634 dfiun2g 4000 fun11iun 5306 |
| Copyright terms: Public domain | W3C validator |