New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralbidv | GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 20-Nov-1994.) |
Ref | Expression |
---|---|
ralbidv.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
ralbidv | ⊢ (φ → (∀x ∈ A ψ ↔ ∀x ∈ A χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxφ | |
2 | ralbidv.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
3 | 1, 2 | ralbid 2633 | 1 ⊢ (φ → (∀x ∈ A ψ ↔ ∀x ∈ A χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 |
This theorem is referenced by: ralbii 2639 2ralbidv 2657 rexralbidv 2659 raleqbi1dv 2816 raleqbidv 2820 cbvral2v 2844 rspc2 2961 rspc3v 2965 reu6i 3028 reu7 3032 sbcralt 3119 sbcralg 3121 raaan 3658 raaanv 3659 r19.12sn 3790 2ralunsn 3881 elintg 3935 elintrabg 3940 eliin 3975 nndisjeq 4430 evenodddisjlem1 4516 evenodddisj 4517 nnpweq 4524 ralxpf 4828 funcnvuni 5162 dff4 5422 dff13f 5473 trd 5922 extd 5924 trrd 5926 refrd 5927 refd 5928 nclenn 6250 nnc3n3p1 6279 nchoicelem12 6301 nchoicelem16 6305 nchoicelem17 6306 nchoicelem19 6308 |
Copyright terms: Public domain | W3C validator |