New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexcom13 | GIF version |
Description: Swap 1st and 3rd restricted existential quantifiers. (Contributed by NM, 8-Apr-2015.) |
Ref | Expression |
---|---|
rexcom13 | ⊢ (∃x ∈ A ∃y ∈ B ∃z ∈ C φ ↔ ∃z ∈ C ∃y ∈ B ∃x ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom 2773 | . 2 ⊢ (∃x ∈ A ∃y ∈ B ∃z ∈ C φ ↔ ∃y ∈ B ∃x ∈ A ∃z ∈ C φ) | |
2 | rexcom 2773 | . . 3 ⊢ (∃x ∈ A ∃z ∈ C φ ↔ ∃z ∈ C ∃x ∈ A φ) | |
3 | 2 | rexbii 2640 | . 2 ⊢ (∃y ∈ B ∃x ∈ A ∃z ∈ C φ ↔ ∃y ∈ B ∃z ∈ C ∃x ∈ A φ) |
4 | rexcom 2773 | . 2 ⊢ (∃y ∈ B ∃z ∈ C ∃x ∈ A φ ↔ ∃z ∈ C ∃y ∈ B ∃x ∈ A φ) | |
5 | 1, 3, 4 | 3bitri 262 | 1 ⊢ (∃x ∈ A ∃y ∈ B ∃z ∈ C φ ↔ ∃z ∈ C ∃y ∈ B ∃x ∈ A φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 |
This theorem is referenced by: rexrot4 2775 |
Copyright terms: Public domain | W3C validator |