New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexcom | GIF version |
Description: Commutation of restricted quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
rexcom | ⊢ (∃x ∈ A ∃y ∈ B φ ↔ ∃y ∈ B ∃x ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2490 | . 2 ⊢ ℲyA | |
2 | nfcv 2490 | . 2 ⊢ ℲxB | |
3 | 1, 2 | rexcomf 2771 | 1 ⊢ (∃x ∈ A ∃y ∈ B φ ↔ ∃y ∈ B ∃x ∈ A φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 |
This theorem is referenced by: rexcom13 2774 rexcom4 2879 iuncom 3976 addccom 4407 ltfinex 4465 nnpw1ex 4485 evenodddisjlem1 4516 phialllem1 4617 xpiundi 4818 addcfnex 5825 crossex 5851 mucex 6134 ncspw1eu 6160 addlec 6209 nc0le1 6217 dflec3 6222 |
Copyright terms: Public domain | W3C validator |