NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rmoan GIF version

Theorem rmoan 3035
Description: Restricted "at most one" still holds when a conjunct is added. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
rmoan (∃*x A φ∃*x A (ψ φ))

Proof of Theorem rmoan
StepHypRef Expression
1 moan 2255 . . 3 (∃*x(x A φ) → ∃*x(ψ (x A φ)))
2 an12 772 . . . 4 ((ψ (x A φ)) ↔ (x A (ψ φ)))
32mobii 2240 . . 3 (∃*x(ψ (x A φ)) ↔ ∃*x(x A (ψ φ)))
41, 3sylib 188 . 2 (∃*x(x A φ) → ∃*x(x A (ψ φ)))
5 df-rmo 2623 . 2 (∃*x A φ∃*x(x A φ))
6 df-rmo 2623 . 2 (∃*x A (ψ φ) ↔ ∃*x(x A (ψ φ)))
74, 5, 63imtr4i 257 1 (∃*x A φ∃*x A (ψ φ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   wcel 1710  ∃*wmo 2205  ∃*wrmo 2618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-rmo 2623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator