| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rmoan | GIF version | ||
| Description: Restricted "at most one" still holds when a conjunct is added. (Contributed by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| rmoan | ⊢ (∃*x ∈ A φ → ∃*x ∈ A (ψ ∧ φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moan 2255 | . . 3 ⊢ (∃*x(x ∈ A ∧ φ) → ∃*x(ψ ∧ (x ∈ A ∧ φ))) | |
| 2 | an12 772 | . . . 4 ⊢ ((ψ ∧ (x ∈ A ∧ φ)) ↔ (x ∈ A ∧ (ψ ∧ φ))) | |
| 3 | 2 | mobii 2240 | . . 3 ⊢ (∃*x(ψ ∧ (x ∈ A ∧ φ)) ↔ ∃*x(x ∈ A ∧ (ψ ∧ φ))) |
| 4 | 1, 3 | sylib 188 | . 2 ⊢ (∃*x(x ∈ A ∧ φ) → ∃*x(x ∈ A ∧ (ψ ∧ φ))) |
| 5 | df-rmo 2623 | . 2 ⊢ (∃*x ∈ A φ ↔ ∃*x(x ∈ A ∧ φ)) | |
| 6 | df-rmo 2623 | . 2 ⊢ (∃*x ∈ A (ψ ∧ φ) ↔ ∃*x(x ∈ A ∧ (ψ ∧ φ))) | |
| 7 | 4, 5, 6 | 3imtr4i 257 | 1 ⊢ (∃*x ∈ A φ → ∃*x ∈ A (ψ ∧ φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∃*wmo 2205 ∃*wrmo 2618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-rmo 2623 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |