New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reueq | GIF version |
Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
reueq | ⊢ (B ∈ A ↔ ∃!x ∈ A x = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 2662 | . 2 ⊢ (B ∈ A ↔ ∃x ∈ A x = B) | |
2 | moeq 3013 | . . . 4 ⊢ ∃*x x = B | |
3 | mormo 2824 | . . . 4 ⊢ (∃*x x = B → ∃*x ∈ A x = B) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∃*x ∈ A x = B |
5 | reu5 2825 | . . 3 ⊢ (∃!x ∈ A x = B ↔ (∃x ∈ A x = B ∧ ∃*x ∈ A x = B)) | |
6 | 4, 5 | mpbiran2 885 | . 2 ⊢ (∃!x ∈ A x = B ↔ ∃x ∈ A x = B) |
7 | 1, 6 | bitr4i 243 | 1 ⊢ (B ∈ A ↔ ∃!x ∈ A x = B) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 ∃*wmo 2205 ∃wrex 2616 ∃!wreu 2617 ∃*wrmo 2618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-rex 2621 df-reu 2622 df-rmo 2623 df-v 2862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |