NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rmobidv GIF version

Theorem rmobidv 2801
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmobidv.1 (φ → (ψχ))
Assertion
Ref Expression
rmobidv (φ → (∃*x A ψ∃*x A χ))
Distinct variable group:   φ,x
Allowed substitution hints:   ψ(x)   χ(x)   A(x)

Proof of Theorem rmobidv
StepHypRef Expression
1 rmobidv.1 . . 3 (φ → (ψχ))
21adantr 451 . 2 ((φ x A) → (ψχ))
32rmobidva 2800 1 (φ → (∃*x A ψ∃*x A χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wcel 1710  ∃*wrmo 2618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-eu 2208  df-mo 2209  df-rmo 2623
This theorem is referenced by:  rmoeqd  2819
  Copyright terms: Public domain W3C validator