New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rmobidva | GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmobidva.1 | ⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) |
Ref | Expression |
---|---|
rmobidva | ⊢ (φ → (∃*x ∈ A ψ ↔ ∃*x ∈ A χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxφ | |
2 | rmobidva.1 | . 2 ⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) | |
3 | 1, 2 | rmobida 2798 | 1 ⊢ (φ → (∃*x ∈ A ψ ↔ ∃*x ∈ A χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∈ wcel 1710 ∃*wrmo 2617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-eu 2208 df-mo 2209 df-rmo 2622 |
This theorem is referenced by: rmobidv 2800 |
Copyright terms: Public domain | W3C validator |