NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rneqd GIF version

Theorem rneqd 4959
Description: Equality deduction for range. (Contributed by set.mm contributors, 4-Mar-2004.)
Hypothesis
Ref Expression
rneqd.1 (φA = B)
Assertion
Ref Expression
rneqd (φ → ran A = ran B)

Proof of Theorem rneqd
StepHypRef Expression
1 rneqd.1 . 2 (φA = B)
2 rneq 4957 . 2 (A = B → ran A = ran B)
31, 2syl 15 1 (φ → ran A = ran B)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  ran crn 4774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-rex 2621  df-br 4641  df-ima 4728  df-rn 4787
This theorem is referenced by:  resima2  5008  resiima  5013  rnxpid  5055  elxp4  5109  funimacnv  5169  fnima  5202
  Copyright terms: Public domain W3C validator