Step | Hyp | Ref
| Expression |
1 | | elxp 4802 |
. 2
⊢ (A ∈ (B × C)
↔ ∃x∃y(A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C))) |
2 | | sneq 3745 |
. . . . . . . . . . 11
⊢ (A = 〈x, y〉 → {A} =
{〈x,
y〉}) |
3 | 2 | rneqd 4959 |
. . . . . . . . . 10
⊢ (A = 〈x, y〉 → ran {A} = ran {〈x, y〉}) |
4 | 3 | unieqd 3903 |
. . . . . . . . 9
⊢ (A = 〈x, y〉 → ∪ran {A} = ∪ran {〈x, y〉}) |
5 | | vex 2863 |
. . . . . . . . . 10
⊢ x ∈
V |
6 | | vex 2863 |
. . . . . . . . . 10
⊢ y ∈
V |
7 | 5, 6 | op2nda 5077 |
. . . . . . . . 9
⊢ ∪ran {〈x, y〉} = y |
8 | 4, 7 | syl6req 2402 |
. . . . . . . 8
⊢ (A = 〈x, y〉 → y =
∪ran {A}) |
9 | 8 | adantr 451 |
. . . . . . 7
⊢ ((A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C)) → y =
∪ran {A}) |
10 | 9 | pm4.71ri 614 |
. . . . . 6
⊢ ((A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C)) ↔ (y =
∪ran {A} ∧ (A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C)))) |
11 | 10 | exbii 1582 |
. . . . 5
⊢ (∃y(A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C)) ↔ ∃y(y = ∪ran {A} ∧ (A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C)))) |
12 | | snex 4112 |
. . . . . . . 8
⊢ {A} ∈
V |
13 | 12 | rnex 5108 |
. . . . . . 7
⊢ ran {A} ∈
V |
14 | 13 | uniex 4318 |
. . . . . 6
⊢ ∪ran {A} ∈ V |
15 | | opeq2 4580 |
. . . . . . . 8
⊢ (y = ∪ran {A} → 〈x, y〉 = 〈x, ∪ran {A}〉) |
16 | 15 | eqeq2d 2364 |
. . . . . . 7
⊢ (y = ∪ran {A} → (A =
〈x,
y〉 ↔
A = 〈x, ∪ran {A}〉)) |
17 | | eleq1 2413 |
. . . . . . . 8
⊢ (y = ∪ran {A} → (y
∈ C
↔ ∪ran {A}
∈ C)) |
18 | 17 | anbi2d 684 |
. . . . . . 7
⊢ (y = ∪ran {A} → ((x
∈ B ∧ y ∈ C) ↔
(x ∈
B ∧ ∪ran {A} ∈ C))) |
19 | 16, 18 | anbi12d 691 |
. . . . . 6
⊢ (y = ∪ran {A} → ((A =
〈x,
y〉 ∧ (x ∈ B ∧ y ∈ C)) ↔
(A = 〈x, ∪ran {A}〉 ∧ (x ∈ B ∧ ∪ran {A} ∈ C)))) |
20 | 14, 19 | ceqsexv 2895 |
. . . . 5
⊢ (∃y(y = ∪ran {A} ∧ (A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C))) ↔ (A =
〈x, ∪ran {A}〉 ∧ (x ∈ B ∧ ∪ran {A} ∈ C))) |
21 | 11, 20 | bitri 240 |
. . . 4
⊢ (∃y(A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C)) ↔ (A =
〈x, ∪ran {A}〉 ∧ (x ∈ B ∧ ∪ran {A} ∈ C))) |
22 | | sneq 3745 |
. . . . . . . . 9
⊢ (A = 〈x, ∪ran {A}〉 →
{A} = {〈x, ∪ran {A}〉}) |
23 | 22 | dmeqd 4910 |
. . . . . . . 8
⊢ (A = 〈x, ∪ran {A}〉 → dom
{A} = dom {〈x, ∪ran {A}〉}) |
24 | 23 | unieqd 3903 |
. . . . . . 7
⊢ (A = 〈x, ∪ran {A}〉 → ∪dom {A} = ∪dom {〈x, ∪ran {A}〉}) |
25 | 5, 14 | op1sta 5073 |
. . . . . . 7
⊢ ∪dom {〈x, ∪ran {A}〉} = x |
26 | 24, 25 | syl6req 2402 |
. . . . . 6
⊢ (A = 〈x, ∪ran {A}〉 →
x = ∪dom
{A}) |
27 | 26 | pm4.71ri 614 |
. . . . 5
⊢ (A = 〈x, ∪ran {A}〉 ↔
(x = ∪dom
{A} ∧
A = 〈x, ∪ran {A}〉)) |
28 | 27 | anbi1i 676 |
. . . 4
⊢ ((A = 〈x, ∪ran {A}〉 ∧ (x ∈ B ∧ ∪ran {A} ∈ C)) ↔ ((x =
∪dom {A} ∧ A = 〈x, ∪ran {A}〉) ∧ (x ∈ B ∧ ∪ran {A} ∈ C))) |
29 | | anass 630 |
. . . 4
⊢ (((x = ∪dom {A} ∧ A = 〈x, ∪ran {A}〉) ∧ (x ∈ B ∧ ∪ran {A} ∈ C)) ↔ (x =
∪dom {A} ∧ (A = 〈x, ∪ran {A}〉 ∧ (x ∈ B ∧ ∪ran {A} ∈ C)))) |
30 | 21, 28, 29 | 3bitri 262 |
. . 3
⊢ (∃y(A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C)) ↔ (x =
∪dom {A} ∧ (A = 〈x, ∪ran {A}〉 ∧ (x ∈ B ∧ ∪ran {A} ∈ C)))) |
31 | 30 | exbii 1582 |
. 2
⊢ (∃x∃y(A = 〈x, y〉 ∧ (x ∈ B ∧ y ∈ C)) ↔ ∃x(x = ∪dom {A} ∧ (A = 〈x, ∪ran {A}〉 ∧ (x ∈ B ∧ ∪ran {A} ∈ C)))) |
32 | 12 | dmex 5107 |
. . . 4
⊢ dom {A} ∈
V |
33 | 32 | uniex 4318 |
. . 3
⊢ ∪dom {A} ∈ V |
34 | | opeq1 4579 |
. . . . 5
⊢ (x = ∪dom {A} → 〈x, ∪ran {A}〉 = 〈∪dom {A}, ∪ran {A}〉) |
35 | 34 | eqeq2d 2364 |
. . . 4
⊢ (x = ∪dom {A} → (A =
〈x, ∪ran {A}〉 ↔ A =
〈∪dom {A}, ∪ran {A}〉)) |
36 | | eleq1 2413 |
. . . . 5
⊢ (x = ∪dom {A} → (x
∈ B
↔ ∪dom {A}
∈ B)) |
37 | 36 | anbi1d 685 |
. . . 4
⊢ (x = ∪dom {A} → ((x
∈ B ∧ ∪ran {A} ∈ C) ↔ (∪dom {A} ∈ B ∧ ∪ran {A} ∈ C))) |
38 | 35, 37 | anbi12d 691 |
. . 3
⊢ (x = ∪dom {A} → ((A =
〈x, ∪ran {A}〉 ∧ (x ∈ B ∧ ∪ran {A} ∈ C)) ↔
(A = 〈∪dom {A}, ∪ran {A}〉 ∧ (∪dom {A} ∈ B ∧ ∪ran {A} ∈ C)))) |
39 | 33, 38 | ceqsexv 2895 |
. 2
⊢ (∃x(x = ∪dom {A} ∧ (A = 〈x, ∪ran {A}〉 ∧ (x ∈ B ∧ ∪ran {A} ∈ C))) ↔ (A =
〈∪dom {A}, ∪ran {A}〉 ∧ (∪dom {A} ∈ B ∧ ∪ran {A} ∈ C))) |
40 | 1, 31, 39 | 3bitri 262 |
1
⊢ (A ∈ (B × C)
↔ (A = 〈∪dom {A}, ∪ran {A}〉 ∧ (∪dom {A} ∈ B ∧ ∪ran {A} ∈ C))) |