New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rneqi | GIF version |
Description: Equality inference for range. (Contributed by set.mm contributors, 4-Mar-2004.) |
Ref | Expression |
---|---|
rneqi.1 | ⊢ A = B |
Ref | Expression |
---|---|
rneqi | ⊢ ran A = ran B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneqi.1 | . 2 ⊢ A = B | |
2 | rneq 4957 | . 2 ⊢ (A = B → ran A = ran B) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ran A = ran B |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ran crn 4774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-rex 2621 df-br 4641 df-ima 4728 df-rn 4787 |
This theorem is referenced by: resima 5007 resima2 5008 ima0 5014 imaundi 5040 imaundir 5041 dminxp 5062 imadmres 5080 dmco 5090 resdif 5307 fpr 5438 rnoprab 5577 mptpreima 5683 rnmpt 5687 rnmpt2 5718 |
Copyright terms: Public domain | W3C validator |