NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rneq GIF version

Theorem rneq 4957
Description: Equality theorem for range. (Contributed by set.mm contributors, 29-Dec-1996.)
Assertion
Ref Expression
rneq (A = B → ran A = ran B)

Proof of Theorem rneq
StepHypRef Expression
1 imaeq1 4938 . 2 (A = B → (A “ V) = (B “ V))
2 df-rn 4787 . 2 ran A = (A “ V)
3 df-rn 4787 . 2 ran B = (B “ V)
41, 2, 33eqtr4g 2410 1 (A = B → ran A = ran B)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  Vcvv 2860  cima 4723  ran crn 4774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-rex 2621  df-br 4641  df-ima 4728  df-rn 4787
This theorem is referenced by:  rneqi  4958  rneqd  4959  feq1  5211  foeq1  5266  fconst5  5456  fvranfn  5870  map0e  6024  1cnc  6140  frecxpg  6316
  Copyright terms: Public domain W3C validator