| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rnlem | GIF version | ||
| Description: Lemma used in construction of real numbers. (Contributed by NM, 4-Sep-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| rnlem | ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) ↔ (((φ ∧ χ) ∧ (ψ ∧ θ)) ∧ ((φ ∧ θ) ∧ (ψ ∧ χ)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 797 | . . . 4 ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) ↔ ((φ ∧ χ) ∧ (ψ ∧ θ))) | |
| 2 | 1 | biimpi 186 | . . 3 ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) → ((φ ∧ χ) ∧ (ψ ∧ θ))) |
| 3 | an42 798 | . . . 4 ⊢ (((φ ∧ θ) ∧ (ψ ∧ χ)) ↔ ((φ ∧ ψ) ∧ (χ ∧ θ))) | |
| 4 | 3 | biimpri 197 | . . 3 ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) → ((φ ∧ θ) ∧ (ψ ∧ χ))) |
| 5 | 2, 4 | jca 518 | . 2 ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) → (((φ ∧ χ) ∧ (ψ ∧ θ)) ∧ ((φ ∧ θ) ∧ (ψ ∧ χ)))) |
| 6 | 3 | biimpi 186 | . . 3 ⊢ (((φ ∧ θ) ∧ (ψ ∧ χ)) → ((φ ∧ ψ) ∧ (χ ∧ θ))) |
| 7 | 6 | adantl 452 | . 2 ⊢ ((((φ ∧ χ) ∧ (ψ ∧ θ)) ∧ ((φ ∧ θ) ∧ (ψ ∧ χ))) → ((φ ∧ ψ) ∧ (χ ∧ θ))) |
| 8 | 5, 7 | impbii 180 | 1 ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) ↔ (((φ ∧ χ) ∧ (ψ ∧ θ)) ∧ ((φ ∧ θ) ∧ (ψ ∧ χ)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |