New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  rspcedv GIF version

Theorem rspcedv 2959
 Description: Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcdv.1 (φA B)
rspcdv.2 ((φ x = A) → (ψχ))
Assertion
Ref Expression
rspcedv (φ → (χx B ψ))
Distinct variable groups:   x,A   x,B   φ,x   χ,x
Allowed substitution hint:   ψ(x)

Proof of Theorem rspcedv
StepHypRef Expression
1 rspcdv.1 . 2 (φA B)
2 rspcdv.2 . . 3 ((φ x = A) → (ψχ))
32biimprd 214 . 2 ((φ x = A) → (χψ))
41, 3rspcimedv 2957 1 (φ → (χx B ψ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 176   ∧ wa 358   = wceq 1642   ∈ wcel 1710  ∃wrex 2615 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ral 2619  df-rex 2620  df-v 2861 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator