| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sb5rf | GIF version | ||
| Description: Reversed substitution. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| sb5rf.1 | ⊢ Ⅎyφ |
| Ref | Expression |
|---|---|
| sb5rf | ⊢ (φ ↔ ∃y(y = x ∧ [y / x]φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb5rf.1 | . . . 4 ⊢ Ⅎyφ | |
| 2 | 1 | sbid2 2084 | . . 3 ⊢ ([x / y][y / x]φ ↔ φ) |
| 3 | sb1 1651 | . . 3 ⊢ ([x / y][y / x]φ → ∃y(y = x ∧ [y / x]φ)) | |
| 4 | 2, 3 | sylbir 204 | . 2 ⊢ (φ → ∃y(y = x ∧ [y / x]φ)) |
| 5 | stdpc7 1917 | . . . 4 ⊢ (y = x → ([y / x]φ → φ)) | |
| 6 | 5 | imp 418 | . . 3 ⊢ ((y = x ∧ [y / x]φ) → φ) |
| 7 | 1, 6 | exlimi 1803 | . 2 ⊢ (∃y(y = x ∧ [y / x]φ) → φ) |
| 8 | 4, 7 | impbii 180 | 1 ⊢ (φ ↔ ∃y(y = x ∧ [y / x]φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: 2sb5rf 2117 |
| Copyright terms: Public domain | W3C validator |