Proof of Theorem sbcom
| Step | Hyp | Ref
| Expression |
| 1 | | drsb1 2022 |
. . . . . 6
⊢ (∀x x = z →
([y / x][y / x]φ ↔
[y / z][y / x]φ)) |
| 2 | | nfae 1954 |
. . . . . . 7
⊢ Ⅎx∀x x = z |
| 3 | | drsb1 2022 |
. . . . . . 7
⊢ (∀x x = z →
([y / x]φ ↔
[y / z]φ)) |
| 4 | 2, 3 | sbbid 2078 |
. . . . . 6
⊢ (∀x x = z →
([y / x][y / x]φ ↔
[y / x][y / z]φ)) |
| 5 | 1, 4 | bitr3d 246 |
. . . . 5
⊢ (∀x x = z →
([y / z][y / x]φ ↔
[y / x][y / z]φ)) |
| 6 | 5 | adantr 451 |
. . . 4
⊢ ((∀x x = z ∧ (¬ ∀x x = y ∧ ¬ ∀z z = y)) →
([y / z][y / x]φ ↔
[y / x][y / z]φ)) |
| 7 | | nfnae 1956 |
. . . . . . . . 9
⊢ Ⅎz ¬ ∀x x = z |
| 8 | | nfnae 1956 |
. . . . . . . . 9
⊢ Ⅎz ¬ ∀x x = y |
| 9 | 7, 8 | nfan 1824 |
. . . . . . . 8
⊢ Ⅎz(¬ ∀x x = z ∧ ¬ ∀x x = y) |
| 10 | | nfeqf 1958 |
. . . . . . . . 9
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
Ⅎx z = y) |
| 11 | | 19.21t 1795 |
. . . . . . . . 9
⊢ (Ⅎx z = y → (∀x(z = y →
(x = y
→ φ)) ↔ (z = y →
∀x(x = y → φ)))) |
| 12 | 10, 11 | syl 15 |
. . . . . . . 8
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
(∀x(z = y → (x =
y → φ)) ↔ (z = y →
∀x(x = y → φ)))) |
| 13 | 9, 12 | albid 1772 |
. . . . . . 7
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
(∀z∀x(z = y → (x =
y → φ)) ↔ ∀z(z = y →
∀x(x = y → φ)))) |
| 14 | 13 | adantrr 697 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ ¬ ∀z z = y)) →
(∀z∀x(z = y → (x =
y → φ)) ↔ ∀z(z = y →
∀x(x = y → φ)))) |
| 15 | | alcom 1737 |
. . . . . . . 8
⊢ (∀z∀x(z = y →
(x = y
→ φ)) ↔ ∀x∀z(z = y →
(x = y
→ φ))) |
| 16 | | nfnae 1956 |
. . . . . . . . . 10
⊢ Ⅎx ¬ ∀x x = z |
| 17 | | nfnae 1956 |
. . . . . . . . . 10
⊢ Ⅎx ¬ ∀z z = y |
| 18 | 16, 17 | nfan 1824 |
. . . . . . . . 9
⊢ Ⅎx(¬ ∀x x = z ∧ ¬ ∀z z = y) |
| 19 | | bi2.04 350 |
. . . . . . . . . . 11
⊢ ((z = y →
(x = y
→ φ)) ↔ (x = y →
(z = y
→ φ))) |
| 20 | 19 | albii 1566 |
. . . . . . . . . 10
⊢ (∀z(z = y →
(x = y
→ φ)) ↔ ∀z(x = y →
(z = y
→ φ))) |
| 21 | | aecom 1946 |
. . . . . . . . . . . . 13
⊢ (∀z z = x →
∀x
x = z) |
| 22 | 21 | con3i 127 |
. . . . . . . . . . . 12
⊢ (¬ ∀x x = z →
¬ ∀z z = x) |
| 23 | | nfeqf 1958 |
. . . . . . . . . . . 12
⊢ ((¬ ∀z z = x ∧ ¬ ∀z z = y) →
Ⅎz x = y) |
| 24 | 22, 23 | sylan 457 |
. . . . . . . . . . 11
⊢ ((¬ ∀x x = z ∧ ¬ ∀z z = y) →
Ⅎz x = y) |
| 25 | | 19.21t 1795 |
. . . . . . . . . . 11
⊢ (Ⅎz x = y → (∀z(x = y →
(z = y
→ φ)) ↔ (x = y →
∀z(z = y → φ)))) |
| 26 | 24, 25 | syl 15 |
. . . . . . . . . 10
⊢ ((¬ ∀x x = z ∧ ¬ ∀z z = y) →
(∀z(x = y → (z =
y → φ)) ↔ (x = y →
∀z(z = y → φ)))) |
| 27 | 20, 26 | syl5bb 248 |
. . . . . . . . 9
⊢ ((¬ ∀x x = z ∧ ¬ ∀z z = y) →
(∀z(z = y → (x =
y → φ)) ↔ (x = y →
∀z(z = y → φ)))) |
| 28 | 18, 27 | albid 1772 |
. . . . . . . 8
⊢ ((¬ ∀x x = z ∧ ¬ ∀z z = y) →
(∀x∀z(z = y → (x =
y → φ)) ↔ ∀x(x = y →
∀z(z = y → φ)))) |
| 29 | 15, 28 | syl5bb 248 |
. . . . . . 7
⊢ ((¬ ∀x x = z ∧ ¬ ∀z z = y) →
(∀z∀x(z = y → (x =
y → φ)) ↔ ∀x(x = y →
∀z(z = y → φ)))) |
| 30 | 29 | adantrl 696 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ ¬ ∀z z = y)) →
(∀z∀x(z = y → (x =
y → φ)) ↔ ∀x(x = y →
∀z(z = y → φ)))) |
| 31 | 14, 30 | bitr3d 246 |
. . . . 5
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ ¬ ∀z z = y)) →
(∀z(z = y → ∀x(x = y →
φ)) ↔ ∀x(x = y →
∀z(z = y → φ)))) |
| 32 | | sb4b 2054 |
. . . . . . 7
⊢ (¬ ∀z z = y →
([y / z][y / x]φ ↔
∀z(z = y → [y /
x]φ))) |
| 33 | | sb4b 2054 |
. . . . . . . . 9
⊢ (¬ ∀x x = y →
([y / x]φ ↔
∀x(x = y → φ))) |
| 34 | 33 | imbi2d 307 |
. . . . . . . 8
⊢ (¬ ∀x x = y →
((z = y
→ [y / x]φ) ↔
(z = y
→ ∀x(x = y → φ)))) |
| 35 | 8, 34 | albid 1772 |
. . . . . . 7
⊢ (¬ ∀x x = y →
(∀z(z = y → [y /
x]φ) ↔ ∀z(z = y →
∀x(x = y → φ)))) |
| 36 | 32, 35 | sylan9bbr 681 |
. . . . . 6
⊢ ((¬ ∀x x = y ∧ ¬ ∀z z = y) →
([y / z][y / x]φ ↔
∀z(z = y → ∀x(x = y →
φ)))) |
| 37 | 36 | adantl 452 |
. . . . 5
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ ¬ ∀z z = y)) →
([y / z][y / x]φ ↔
∀z(z = y → ∀x(x = y →
φ)))) |
| 38 | | sb4b 2054 |
. . . . . . 7
⊢ (¬ ∀x x = y →
([y / x][y / z]φ ↔
∀x(x = y → [y /
z]φ))) |
| 39 | | sb4b 2054 |
. . . . . . . . 9
⊢ (¬ ∀z z = y →
([y / z]φ ↔
∀z(z = y → φ))) |
| 40 | 39 | imbi2d 307 |
. . . . . . . 8
⊢ (¬ ∀z z = y →
((x = y
→ [y / z]φ) ↔
(x = y
→ ∀z(z = y → φ)))) |
| 41 | 17, 40 | albid 1772 |
. . . . . . 7
⊢ (¬ ∀z z = y →
(∀x(x = y → [y /
z]φ) ↔ ∀x(x = y →
∀z(z = y → φ)))) |
| 42 | 38, 41 | sylan9bb 680 |
. . . . . 6
⊢ ((¬ ∀x x = y ∧ ¬ ∀z z = y) →
([y / x][y / z]φ ↔
∀x(x = y → ∀z(z = y →
φ)))) |
| 43 | 42 | adantl 452 |
. . . . 5
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ ¬ ∀z z = y)) →
([y / x][y / z]φ ↔
∀x(x = y → ∀z(z = y →
φ)))) |
| 44 | 31, 37, 43 | 3bitr4d 276 |
. . . 4
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ ¬ ∀z z = y)) →
([y / z][y / x]φ ↔
[y / x][y / z]φ)) |
| 45 | 6, 44 | pm2.61ian 765 |
. . 3
⊢ ((¬ ∀x x = y ∧ ¬ ∀z z = y) →
([y / z][y / x]φ ↔
[y / x][y / z]φ)) |
| 46 | 45 | ex 423 |
. 2
⊢ (¬ ∀x x = y →
(¬ ∀z z = y → ([y /
z][y /
x]φ
↔ [y / x][y / z]φ))) |
| 47 | | nfae 1954 |
. . . 4
⊢ Ⅎz∀x x = y |
| 48 | | sbequ12 1919 |
. . . . 5
⊢ (x = y →
(φ ↔ [y / x]φ)) |
| 49 | 48 | sps 1754 |
. . . 4
⊢ (∀x x = y →
(φ ↔ [y / x]φ)) |
| 50 | 47, 49 | sbbid 2078 |
. . 3
⊢ (∀x x = y →
([y / z]φ ↔
[y / z][y / x]φ)) |
| 51 | | sbequ12 1919 |
. . . 4
⊢ (x = y →
([y / z]φ ↔
[y / x][y / z]φ)) |
| 52 | 51 | sps 1754 |
. . 3
⊢ (∀x x = y →
([y / z]φ ↔
[y / x][y / z]φ)) |
| 53 | 50, 52 | bitr3d 246 |
. 2
⊢ (∀x x = y →
([y / z][y / x]φ ↔
[y / x][y / z]φ)) |
| 54 | | sbequ12 1919 |
. . . 4
⊢ (z = y →
([y / x]φ ↔
[y / z][y / x]φ)) |
| 55 | 54 | sps 1754 |
. . 3
⊢ (∀z z = y →
([y / x]φ ↔
[y / z][y / x]φ)) |
| 56 | | nfae 1954 |
. . . 4
⊢ Ⅎx∀z z = y |
| 57 | | sbequ12 1919 |
. . . . 5
⊢ (z = y →
(φ ↔ [y / z]φ)) |
| 58 | 57 | sps 1754 |
. . . 4
⊢ (∀z z = y →
(φ ↔ [y / z]φ)) |
| 59 | 56, 58 | sbbid 2078 |
. . 3
⊢ (∀z z = y →
([y / x]φ ↔
[y / x][y / z]φ)) |
| 60 | 55, 59 | bitr3d 246 |
. 2
⊢ (∀z z = y →
([y / z][y / x]φ ↔
[y / x][y / z]φ)) |
| 61 | 46, 53, 60 | pm2.61ii 157 |
1
⊢ ([y / z][y / x]φ ↔ [y / x][y / z]φ) |