Proof of Theorem sbcom
Step | Hyp | Ref
| Expression |
1 | | drsb1 2022 |
. . . . . 6
⊢ (∀x x = z →
([y / x][y / x]φ ↔
[y / z][y / x]φ)) |
2 | | nfae 1954 |
. . . . . . 7
⊢ Ⅎx∀x x = z |
3 | | drsb1 2022 |
. . . . . . 7
⊢ (∀x x = z →
([y / x]φ ↔
[y / z]φ)) |
4 | 2, 3 | sbbid 2078 |
. . . . . 6
⊢ (∀x x = z →
([y / x][y / x]φ ↔
[y / x][y / z]φ)) |
5 | 1, 4 | bitr3d 246 |
. . . . 5
⊢ (∀x x = z →
([y / z][y / x]φ ↔
[y / x][y / z]φ)) |
6 | 5 | adantr 451 |
. . . 4
⊢ ((∀x x = z ∧ (¬ ∀x x = y ∧ ¬ ∀z z = y)) →
([y / z][y / x]φ ↔
[y / x][y / z]φ)) |
7 | | nfnae 1956 |
. . . . . . . . 9
⊢ Ⅎz ¬ ∀x x = z |
8 | | nfnae 1956 |
. . . . . . . . 9
⊢ Ⅎz ¬ ∀x x = y |
9 | 7, 8 | nfan 1824 |
. . . . . . . 8
⊢ Ⅎz(¬ ∀x x = z ∧ ¬ ∀x x = y) |
10 | | nfeqf 1958 |
. . . . . . . . 9
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
Ⅎx z = y) |
11 | | 19.21t 1795 |
. . . . . . . . 9
⊢ (Ⅎx z = y → (∀x(z = y →
(x = y
→ φ)) ↔ (z = y →
∀x(x = y → φ)))) |
12 | 10, 11 | syl 15 |
. . . . . . . 8
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
(∀x(z = y → (x =
y → φ)) ↔ (z = y →
∀x(x = y → φ)))) |
13 | 9, 12 | albid 1772 |
. . . . . . 7
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
(∀z∀x(z = y → (x =
y → φ)) ↔ ∀z(z = y →
∀x(x = y → φ)))) |
14 | 13 | adantrr 697 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ ¬ ∀z z = y)) →
(∀z∀x(z = y → (x =
y → φ)) ↔ ∀z(z = y →
∀x(x = y → φ)))) |
15 | | alcom 1737 |
. . . . . . . 8
⊢ (∀z∀x(z = y →
(x = y
→ φ)) ↔ ∀x∀z(z = y →
(x = y
→ φ))) |
16 | | nfnae 1956 |
. . . . . . . . . 10
⊢ Ⅎx ¬ ∀x x = z |
17 | | nfnae 1956 |
. . . . . . . . . 10
⊢ Ⅎx ¬ ∀z z = y |
18 | 16, 17 | nfan 1824 |
. . . . . . . . 9
⊢ Ⅎx(¬ ∀x x = z ∧ ¬ ∀z z = y) |
19 | | bi2.04 350 |
. . . . . . . . . . 11
⊢ ((z = y →
(x = y
→ φ)) ↔ (x = y →
(z = y
→ φ))) |
20 | 19 | albii 1566 |
. . . . . . . . . 10
⊢ (∀z(z = y →
(x = y
→ φ)) ↔ ∀z(x = y →
(z = y
→ φ))) |
21 | | aecom 1946 |
. . . . . . . . . . . . 13
⊢ (∀z z = x →
∀x
x = z) |
22 | 21 | con3i 127 |
. . . . . . . . . . . 12
⊢ (¬ ∀x x = z →
¬ ∀z z = x) |
23 | | nfeqf 1958 |
. . . . . . . . . . . 12
⊢ ((¬ ∀z z = x ∧ ¬ ∀z z = y) →
Ⅎz x = y) |
24 | 22, 23 | sylan 457 |
. . . . . . . . . . 11
⊢ ((¬ ∀x x = z ∧ ¬ ∀z z = y) →
Ⅎz x = y) |
25 | | 19.21t 1795 |
. . . . . . . . . . 11
⊢ (Ⅎz x = y → (∀z(x = y →
(z = y
→ φ)) ↔ (x = y →
∀z(z = y → φ)))) |
26 | 24, 25 | syl 15 |
. . . . . . . . . 10
⊢ ((¬ ∀x x = z ∧ ¬ ∀z z = y) →
(∀z(x = y → (z =
y → φ)) ↔ (x = y →
∀z(z = y → φ)))) |
27 | 20, 26 | syl5bb 248 |
. . . . . . . . 9
⊢ ((¬ ∀x x = z ∧ ¬ ∀z z = y) →
(∀z(z = y → (x =
y → φ)) ↔ (x = y →
∀z(z = y → φ)))) |
28 | 18, 27 | albid 1772 |
. . . . . . . 8
⊢ ((¬ ∀x x = z ∧ ¬ ∀z z = y) →
(∀x∀z(z = y → (x =
y → φ)) ↔ ∀x(x = y →
∀z(z = y → φ)))) |
29 | 15, 28 | syl5bb 248 |
. . . . . . 7
⊢ ((¬ ∀x x = z ∧ ¬ ∀z z = y) →
(∀z∀x(z = y → (x =
y → φ)) ↔ ∀x(x = y →
∀z(z = y → φ)))) |
30 | 29 | adantrl 696 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ ¬ ∀z z = y)) →
(∀z∀x(z = y → (x =
y → φ)) ↔ ∀x(x = y →
∀z(z = y → φ)))) |
31 | 14, 30 | bitr3d 246 |
. . . . 5
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ ¬ ∀z z = y)) →
(∀z(z = y → ∀x(x = y →
φ)) ↔ ∀x(x = y →
∀z(z = y → φ)))) |
32 | | sb4b 2054 |
. . . . . . 7
⊢ (¬ ∀z z = y →
([y / z][y / x]φ ↔
∀z(z = y → [y /
x]φ))) |
33 | | sb4b 2054 |
. . . . . . . . 9
⊢ (¬ ∀x x = y →
([y / x]φ ↔
∀x(x = y → φ))) |
34 | 33 | imbi2d 307 |
. . . . . . . 8
⊢ (¬ ∀x x = y →
((z = y
→ [y / x]φ) ↔
(z = y
→ ∀x(x = y → φ)))) |
35 | 8, 34 | albid 1772 |
. . . . . . 7
⊢ (¬ ∀x x = y →
(∀z(z = y → [y /
x]φ) ↔ ∀z(z = y →
∀x(x = y → φ)))) |
36 | 32, 35 | sylan9bbr 681 |
. . . . . 6
⊢ ((¬ ∀x x = y ∧ ¬ ∀z z = y) →
([y / z][y / x]φ ↔
∀z(z = y → ∀x(x = y →
φ)))) |
37 | 36 | adantl 452 |
. . . . 5
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ ¬ ∀z z = y)) →
([y / z][y / x]φ ↔
∀z(z = y → ∀x(x = y →
φ)))) |
38 | | sb4b 2054 |
. . . . . . 7
⊢ (¬ ∀x x = y →
([y / x][y / z]φ ↔
∀x(x = y → [y /
z]φ))) |
39 | | sb4b 2054 |
. . . . . . . . 9
⊢ (¬ ∀z z = y →
([y / z]φ ↔
∀z(z = y → φ))) |
40 | 39 | imbi2d 307 |
. . . . . . . 8
⊢ (¬ ∀z z = y →
((x = y
→ [y / z]φ) ↔
(x = y
→ ∀z(z = y → φ)))) |
41 | 17, 40 | albid 1772 |
. . . . . . 7
⊢ (¬ ∀z z = y →
(∀x(x = y → [y /
z]φ) ↔ ∀x(x = y →
∀z(z = y → φ)))) |
42 | 38, 41 | sylan9bb 680 |
. . . . . 6
⊢ ((¬ ∀x x = y ∧ ¬ ∀z z = y) →
([y / x][y / z]φ ↔
∀x(x = y → ∀z(z = y →
φ)))) |
43 | 42 | adantl 452 |
. . . . 5
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ ¬ ∀z z = y)) →
([y / x][y / z]φ ↔
∀x(x = y → ∀z(z = y →
φ)))) |
44 | 31, 37, 43 | 3bitr4d 276 |
. . . 4
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ ¬ ∀z z = y)) →
([y / z][y / x]φ ↔
[y / x][y / z]φ)) |
45 | 6, 44 | pm2.61ian 765 |
. . 3
⊢ ((¬ ∀x x = y ∧ ¬ ∀z z = y) →
([y / z][y / x]φ ↔
[y / x][y / z]φ)) |
46 | 45 | ex 423 |
. 2
⊢ (¬ ∀x x = y →
(¬ ∀z z = y → ([y /
z][y /
x]φ
↔ [y / x][y / z]φ))) |
47 | | nfae 1954 |
. . . 4
⊢ Ⅎz∀x x = y |
48 | | sbequ12 1919 |
. . . . 5
⊢ (x = y →
(φ ↔ [y / x]φ)) |
49 | 48 | sps 1754 |
. . . 4
⊢ (∀x x = y →
(φ ↔ [y / x]φ)) |
50 | 47, 49 | sbbid 2078 |
. . 3
⊢ (∀x x = y →
([y / z]φ ↔
[y / z][y / x]φ)) |
51 | | sbequ12 1919 |
. . . 4
⊢ (x = y →
([y / z]φ ↔
[y / x][y / z]φ)) |
52 | 51 | sps 1754 |
. . 3
⊢ (∀x x = y →
([y / z]φ ↔
[y / x][y / z]φ)) |
53 | 50, 52 | bitr3d 246 |
. 2
⊢ (∀x x = y →
([y / z][y / x]φ ↔
[y / x][y / z]φ)) |
54 | | sbequ12 1919 |
. . . 4
⊢ (z = y →
([y / x]φ ↔
[y / z][y / x]φ)) |
55 | 54 | sps 1754 |
. . 3
⊢ (∀z z = y →
([y / x]φ ↔
[y / z][y / x]φ)) |
56 | | nfae 1954 |
. . . 4
⊢ Ⅎx∀z z = y |
57 | | sbequ12 1919 |
. . . . 5
⊢ (z = y →
(φ ↔ [y / z]φ)) |
58 | 57 | sps 1754 |
. . . 4
⊢ (∀z z = y →
(φ ↔ [y / z]φ)) |
59 | 56, 58 | sbbid 2078 |
. . 3
⊢ (∀z z = y →
([y / x]φ ↔
[y / x][y / z]φ)) |
60 | 55, 59 | bitr3d 246 |
. 2
⊢ (∀z z = y →
([y / z][y / x]φ ↔
[y / x][y / z]φ)) |
61 | 46, 53, 60 | pm2.61ii 157 |
1
⊢ ([y / z][y / x]φ ↔ [y / x][y / z]φ) |