New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sb5 | GIF version |
Description: Equivalence for substitution. Similar to Theorem 6.1 of [Quine] p. 40. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
sb5 | ⊢ ([y / x]φ ↔ ∃x(x = y ∧ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2099 | . 2 ⊢ ([y / x]φ ↔ ∀x(x = y → φ)) | |
2 | sb56 2098 | . 2 ⊢ (∃x(x = y ∧ φ) ↔ ∀x(x = y → φ)) | |
3 | 1, 2 | bitr4i 243 | 1 ⊢ ([y / x]φ ↔ ∃x(x = y ∧ φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: 2sb5 2112 dfsb7 2119 sb7f 2120 sbelx 2124 sbc2or 3055 sbc5 3071 |
Copyright terms: Public domain | W3C validator |