New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > alrimi | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
alrimi.1 | ⊢ Ⅎxφ |
alrimi.2 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
alrimi | ⊢ (φ → ∀xψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimi.1 | . . 3 ⊢ Ⅎxφ | |
2 | 1 | nfri 1762 | . 2 ⊢ (φ → ∀xφ) |
3 | alrimi.2 | . 2 ⊢ (φ → ψ) | |
4 | 2, 3 | alrimih 1565 | 1 ⊢ (φ → ∀xψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nfd 1766 a5i 1789 exlimd 1806 19.12 1847 nfald 1852 nfaldOLD 1853 19.38OLD 1874 equs5e 1888 equsal 1960 sbbid 2078 dvelimdf 2082 sb6rf 2091 sb8 2092 nfsbd 2111 eupicka 2268 2moex 2275 abbid 2466 nfcd 2484 ralrimi 2695 ceqsalg 2883 ceqsex 2893 vtocldf 2906 morex 3020 sbciedf 3081 csbiebt 3172 csbiedf 3173 iota2df 4365 sniota 4369 ncfinlower 4483 ssopab2b 4713 imadif 5171 |
Copyright terms: Public domain | W3C validator |