Proof of Theorem sbcom2
| Step | Hyp | Ref
| Expression |
| 1 | | alcom 1737 |
. . . . . 6
⊢ (∀z∀x(x = y →
(z = w
→ φ)) ↔ ∀x∀z(x = y →
(z = w
→ φ))) |
| 2 | | bi2.04 350 |
. . . . . . . . 9
⊢ ((x = y →
(z = w
→ φ)) ↔ (z = w →
(x = y
→ φ))) |
| 3 | 2 | albii 1566 |
. . . . . . . 8
⊢ (∀x(x = y →
(z = w
→ φ)) ↔ ∀x(z = w →
(x = y
→ φ))) |
| 4 | | 19.21v 1890 |
. . . . . . . 8
⊢ (∀x(z = w →
(x = y
→ φ)) ↔ (z = w →
∀x(x = y → φ))) |
| 5 | 3, 4 | bitri 240 |
. . . . . . 7
⊢ (∀x(x = y →
(z = w
→ φ)) ↔ (z = w →
∀x(x = y → φ))) |
| 6 | 5 | albii 1566 |
. . . . . 6
⊢ (∀z∀x(x = y →
(z = w
→ φ)) ↔ ∀z(z = w →
∀x(x = y → φ))) |
| 7 | | 19.21v 1890 |
. . . . . . 7
⊢ (∀z(x = y →
(z = w
→ φ)) ↔ (x = y →
∀z(z = w → φ))) |
| 8 | 7 | albii 1566 |
. . . . . 6
⊢ (∀x∀z(x = y →
(z = w
→ φ)) ↔ ∀x(x = y →
∀z(z = w → φ))) |
| 9 | 1, 6, 8 | 3bitr3i 266 |
. . . . 5
⊢ (∀z(z = w →
∀x(x = y → φ))
↔ ∀x(x = y → ∀z(z = w →
φ))) |
| 10 | 9 | a1i 10 |
. . . 4
⊢ ((¬ ∀x x = y ∧ ¬ ∀z z = w) →
(∀z(z = w → ∀x(x = y →
φ)) ↔ ∀x(x = y →
∀z(z = w → φ)))) |
| 11 | | sb4b 2054 |
. . . . 5
⊢ (¬ ∀z z = w →
([w / z][y / x]φ ↔
∀z(z = w → [y /
x]φ))) |
| 12 | | sb4b 2054 |
. . . . . . 7
⊢ (¬ ∀x x = y →
([y / x]φ ↔
∀x(x = y → φ))) |
| 13 | 12 | imbi2d 307 |
. . . . . 6
⊢ (¬ ∀x x = y →
((z = w
→ [y / x]φ) ↔
(z = w
→ ∀x(x = y → φ)))) |
| 14 | 13 | albidv 1625 |
. . . . 5
⊢ (¬ ∀x x = y →
(∀z(z = w → [y /
x]φ) ↔ ∀z(z = w →
∀x(x = y → φ)))) |
| 15 | 11, 14 | sylan9bbr 681 |
. . . 4
⊢ ((¬ ∀x x = y ∧ ¬ ∀z z = w) →
([w / z][y / x]φ ↔
∀z(z = w → ∀x(x = y →
φ)))) |
| 16 | | sb4b 2054 |
. . . . 5
⊢ (¬ ∀x x = y →
([y / x][w / z]φ ↔
∀x(x = y → [w /
z]φ))) |
| 17 | | sb4b 2054 |
. . . . . . 7
⊢ (¬ ∀z z = w →
([w / z]φ ↔
∀z(z = w → φ))) |
| 18 | 17 | imbi2d 307 |
. . . . . 6
⊢ (¬ ∀z z = w →
((x = y
→ [w / z]φ) ↔
(x = y
→ ∀z(z = w → φ)))) |
| 19 | 18 | albidv 1625 |
. . . . 5
⊢ (¬ ∀z z = w →
(∀x(x = y → [w /
z]φ) ↔ ∀x(x = y →
∀z(z = w → φ)))) |
| 20 | 16, 19 | sylan9bb 680 |
. . . 4
⊢ ((¬ ∀x x = y ∧ ¬ ∀z z = w) →
([y / x][w / z]φ ↔
∀x(x = y → ∀z(z = w →
φ)))) |
| 21 | 10, 15, 20 | 3bitr4d 276 |
. . 3
⊢ ((¬ ∀x x = y ∧ ¬ ∀z z = w) →
([w / z][y / x]φ ↔
[y / x][w / z]φ)) |
| 22 | 21 | ex 423 |
. 2
⊢ (¬ ∀x x = y →
(¬ ∀z z = w → ([w /
z][y /
x]φ
↔ [y / x][w / z]φ))) |
| 23 | | nfae 1954 |
. . . 4
⊢ Ⅎz∀x x = y |
| 24 | | sbequ12 1919 |
. . . . 5
⊢ (x = y →
(φ ↔ [y / x]φ)) |
| 25 | 24 | sps 1754 |
. . . 4
⊢ (∀x x = y →
(φ ↔ [y / x]φ)) |
| 26 | 23, 25 | sbbid 2078 |
. . 3
⊢ (∀x x = y →
([w / z]φ ↔
[w / z][y / x]φ)) |
| 27 | | sbequ12 1919 |
. . . 4
⊢ (x = y →
([w / z]φ ↔
[y / x][w / z]φ)) |
| 28 | 27 | sps 1754 |
. . 3
⊢ (∀x x = y →
([w / z]φ ↔
[y / x][w / z]φ)) |
| 29 | 26, 28 | bitr3d 246 |
. 2
⊢ (∀x x = y →
([w / z][y / x]φ ↔
[y / x][w / z]φ)) |
| 30 | | sbequ12 1919 |
. . . 4
⊢ (z = w →
([y / x]φ ↔
[w / z][y / x]φ)) |
| 31 | 30 | sps 1754 |
. . 3
⊢ (∀z z = w →
([y / x]φ ↔
[w / z][y / x]φ)) |
| 32 | | nfae 1954 |
. . . 4
⊢ Ⅎx∀z z = w |
| 33 | | sbequ12 1919 |
. . . . 5
⊢ (z = w →
(φ ↔ [w / z]φ)) |
| 34 | 33 | sps 1754 |
. . . 4
⊢ (∀z z = w →
(φ ↔ [w / z]φ)) |
| 35 | 32, 34 | sbbid 2078 |
. . 3
⊢ (∀z z = w →
([y / x]φ ↔
[y / x][w / z]φ)) |
| 36 | 31, 35 | bitr3d 246 |
. 2
⊢ (∀z z = w →
([w / z][y / x]φ ↔
[y / x][w / z]φ)) |
| 37 | 22, 29, 36 | pm2.61ii 157 |
1
⊢ ([w / z][y / x]φ ↔ [y / x][w / z]φ) |