New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbc8g | GIF version |
Description: This is the closest we can get to df-sbc 3048 if we start from dfsbcq 3049 (see its comments) and dfsbcq2 3050. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbc8g | ⊢ (A ∈ V → ([̣A / x]̣φ ↔ A ∈ {x ∣ φ})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3049 | . 2 ⊢ (y = A → ([̣y / x]̣φ ↔ [̣A / x]̣φ)) | |
2 | eleq1 2413 | . 2 ⊢ (y = A → (y ∈ {x ∣ φ} ↔ A ∈ {x ∣ φ})) | |
3 | df-clab 2340 | . . 3 ⊢ (y ∈ {x ∣ φ} ↔ [y / x]φ) | |
4 | equid 1676 | . . . 4 ⊢ y = y | |
5 | dfsbcq2 3050 | . . . 4 ⊢ (y = y → ([y / x]φ ↔ [̣y / x]̣φ)) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ([y / x]φ ↔ [̣y / x]̣φ) |
7 | 3, 6 | bitr2i 241 | . 2 ⊢ ([̣y / x]̣φ ↔ y ∈ {x ∣ φ}) |
8 | 1, 2, 7 | vtoclbg 2916 | 1 ⊢ (A ∈ V → ([̣A / x]̣φ ↔ A ∈ {x ∣ φ})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 [wsb 1648 ∈ wcel 1710 {cab 2339 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |