| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbelx | GIF version | ||
| Description: Elimination of substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbelx | ⊢ (φ ↔ ∃x(x = y ∧ [x / y]φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid2v 2123 | . 2 ⊢ ([y / x][x / y]φ ↔ φ) | |
| 2 | sb5 2100 | . 2 ⊢ ([y / x][x / y]φ ↔ ∃x(x = y ∧ [x / y]φ)) | |
| 3 | 1, 2 | bitr3i 242 | 1 ⊢ (φ ↔ ∃x(x = y ∧ [x / y]φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: sbel2x 2125 |
| Copyright terms: Public domain | W3C validator |