![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > sbel2x | GIF version |
Description: Elimination of double substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbel2x | ⊢ (φ ↔ ∃x∃y((x = z ∧ y = w) ∧ [y / w][x / z]φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbelx 2124 | . . . . 5 ⊢ ([x / z]φ ↔ ∃y(y = w ∧ [y / w][x / z]φ)) | |
2 | 1 | anbi2i 675 | . . . 4 ⊢ ((x = z ∧ [x / z]φ) ↔ (x = z ∧ ∃y(y = w ∧ [y / w][x / z]φ))) |
3 | 2 | exbii 1582 | . . 3 ⊢ (∃x(x = z ∧ [x / z]φ) ↔ ∃x(x = z ∧ ∃y(y = w ∧ [y / w][x / z]φ))) |
4 | sbelx 2124 | . . 3 ⊢ (φ ↔ ∃x(x = z ∧ [x / z]φ)) | |
5 | exdistr 1906 | . . 3 ⊢ (∃x∃y(x = z ∧ (y = w ∧ [y / w][x / z]φ)) ↔ ∃x(x = z ∧ ∃y(y = w ∧ [y / w][x / z]φ))) | |
6 | 3, 4, 5 | 3bitr4i 268 | . 2 ⊢ (φ ↔ ∃x∃y(x = z ∧ (y = w ∧ [y / w][x / z]φ))) |
7 | anass 630 | . . 3 ⊢ (((x = z ∧ y = w) ∧ [y / w][x / z]φ) ↔ (x = z ∧ (y = w ∧ [y / w][x / z]φ))) | |
8 | 7 | 2exbii 1583 | . 2 ⊢ (∃x∃y((x = z ∧ y = w) ∧ [y / w][x / z]φ) ↔ ∃x∃y(x = z ∧ (y = w ∧ [y / w][x / z]φ))) |
9 | 6, 8 | bitr4i 243 | 1 ⊢ (φ ↔ ∃x∃y((x = z ∧ y = w) ∧ [y / w][x / z]φ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |