New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbequ12 | GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbequ12 | ⊢ (x = y → (φ ↔ [y / x]φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ1 1918 | . 2 ⊢ (x = y → (φ → [y / x]φ)) | |
2 | sbequ2 1650 | . 2 ⊢ (x = y → ([y / x]φ → φ)) | |
3 | 1, 2 | impbid 183 | 1 ⊢ (x = y → (φ ↔ [y / x]φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 |
This theorem is referenced by: sbequ12r 1920 sbequ12a 1921 sbid 1922 ax16ALT 2047 ax16ALT2 2048 nfsb4t 2080 sbco 2083 sbco2 2086 sbcom 2089 sbcom2 2114 sb6a 2116 sbal1 2126 mopick 2266 2mo 2282 2eu6 2289 clelab 2474 sbab 2476 cbvralf 2830 cbvralsv 2847 cbvrexsv 2848 cbvrab 2858 sbhypf 2905 mob2 3017 reu2 3025 reu6 3026 sbcralt 3119 sbcralg 3121 sbcrexg 3122 sbcreug 3123 cbvreucsf 3201 cbvrabcsf 3202 csbifg 3691 cbviota 4345 csbiotag 4372 cbvopab1 4633 cbvopab1s 4635 csbopabg 4638 opelopabsb 4698 opeliunxp 4821 ralxpf 4828 cbvmpt 5677 |
Copyright terms: Public domain | W3C validator |