Step | Hyp | Ref
| Expression |
1 | | elex 2868 |
. . 3
⊢ (〈x, C〉 ∈ ∪x ∈ A ({x} ×
B) → 〈x, C〉 ∈ V) |
2 | | opexb 4604 |
. . . 4
⊢ (〈x, C〉 ∈ V ↔ (x
∈ V ∧
C ∈
V)) |
3 | 2 | simprbi 450 |
. . 3
⊢ (〈x, C〉 ∈ V → C
∈ V) |
4 | 1, 3 | syl 15 |
. 2
⊢ (〈x, C〉 ∈ ∪x ∈ A ({x} ×
B) → C ∈
V) |
5 | | elex 2868 |
. . 3
⊢ (C ∈ B → C ∈ V) |
6 | 5 | adantl 452 |
. 2
⊢ ((x ∈ A ∧ C ∈ B) → C
∈ V) |
7 | | vex 2863 |
. . . . 5
⊢ x ∈
V |
8 | | opexg 4588 |
. . . . 5
⊢ ((x ∈ V ∧ C ∈ V) → 〈x, C〉 ∈ V) |
9 | 7, 8 | mpan 651 |
. . . 4
⊢ (C ∈ V → 〈x, C〉 ∈ V) |
10 | | df-rex 2621 |
. . . . . . 7
⊢ (∃x ∈ A y ∈ ({x} × B)
↔ ∃x(x ∈ A ∧ y ∈ ({x} ×
B))) |
11 | | nfv 1619 |
. . . . . . . 8
⊢ Ⅎz(x ∈ A ∧ y ∈ ({x} ×
B)) |
12 | | nfs1v 2106 |
. . . . . . . . 9
⊢ Ⅎx[z / x]x ∈ A |
13 | | nfcv 2490 |
. . . . . . . . . . 11
⊢
Ⅎx{z} |
14 | | nfcsb1v 3169 |
. . . . . . . . . . 11
⊢
Ⅎx[z / x]B |
15 | 13, 14 | nfxp 4811 |
. . . . . . . . . 10
⊢
Ⅎx({z} × [z / x]B) |
16 | 15 | nfcri 2484 |
. . . . . . . . 9
⊢ Ⅎx y ∈ ({z} ×
[z / x]B) |
17 | 12, 16 | nfan 1824 |
. . . . . . . 8
⊢ Ⅎx([z / x]x ∈ A ∧ y ∈ ({z} ×
[z / x]B)) |
18 | | sbequ12 1919 |
. . . . . . . . 9
⊢ (x = z →
(x ∈
A ↔ [z / x]x ∈ A)) |
19 | | sneq 3745 |
. . . . . . . . . . 11
⊢ (x = z →
{x} = {z}) |
20 | | csbeq1a 3145 |
. . . . . . . . . . 11
⊢ (x = z →
B = [z / x]B) |
21 | 19, 20 | xpeq12d 4810 |
. . . . . . . . . 10
⊢ (x = z →
({x} × B) = ({z}
× [z / x]B)) |
22 | 21 | eleq2d 2420 |
. . . . . . . . 9
⊢ (x = z →
(y ∈
({x} × B) ↔ y
∈ ({z}
× [z / x]B))) |
23 | 18, 22 | anbi12d 691 |
. . . . . . . 8
⊢ (x = z →
((x ∈
A ∧
y ∈
({x} × B)) ↔ ([z /
x]x
∈ A ∧ y ∈ ({z} ×
[z / x]B)))) |
24 | 11, 17, 23 | cbvex 1985 |
. . . . . . 7
⊢ (∃x(x ∈ A ∧ y ∈ ({x} × B))
↔ ∃z([z / x]x ∈ A ∧ y ∈ ({z} ×
[z / x]B))) |
25 | 10, 24 | bitri 240 |
. . . . . 6
⊢ (∃x ∈ A y ∈ ({x} × B)
↔ ∃z([z / x]x ∈ A ∧ y ∈ ({z} ×
[z / x]B))) |
26 | | eleq1 2413 |
. . . . . . . 8
⊢ (y = 〈x, C〉 → (y
∈ ({z}
× [z / x]B)
↔ 〈x, C〉 ∈ ({z} × [z / x]B))) |
27 | 26 | anbi2d 684 |
. . . . . . 7
⊢ (y = 〈x, C〉 → (([z /
x]x
∈ A ∧ y ∈ ({z} ×
[z / x]B))
↔ ([z / x]x ∈ A ∧ 〈x, C〉 ∈ ({z} × [z / x]B)))) |
28 | 27 | exbidv 1626 |
. . . . . 6
⊢ (y = 〈x, C〉 → (∃z([z / x]x ∈ A ∧ y ∈ ({z} × [z / x]B))
↔ ∃z([z / x]x ∈ A ∧ 〈x, C〉 ∈ ({z} × [z / x]B)))) |
29 | 25, 28 | syl5bb 248 |
. . . . 5
⊢ (y = 〈x, C〉 → (∃x ∈ A y ∈ ({x} × B)
↔ ∃z([z / x]x ∈ A ∧ 〈x, C〉 ∈ ({z} × [z / x]B)))) |
30 | | df-iun 3972 |
. . . . 5
⊢ ∪x ∈ A ({x} × B) =
{y ∣
∃x ∈ A y ∈ ({x} × B)} |
31 | 29, 30 | elab2g 2988 |
. . . 4
⊢ (〈x, C〉 ∈ V → (〈x, C〉 ∈ ∪x ∈ A ({x} ×
B) ↔ ∃z([z / x]x ∈ A ∧ 〈x, C〉 ∈ ({z} ×
[z / x]B)))) |
32 | 9, 31 | syl 15 |
. . 3
⊢ (C ∈ V →
(〈x,
C〉 ∈ ∪x ∈ A ({x} ×
B) ↔ ∃z([z / x]x ∈ A ∧ 〈x, C〉 ∈ ({z} ×
[z / x]B)))) |
33 | | opelxp 4812 |
. . . . . . 7
⊢ (〈x, C〉 ∈ ({z} ×
[z / x]B)
↔ (x ∈ {z} ∧ C ∈ [z /
x]B)) |
34 | 33 | anbi2i 675 |
. . . . . 6
⊢ (([z / x]x ∈ A ∧ 〈x, C〉 ∈ ({z} ×
[z / x]B))
↔ ([z / x]x ∈ A ∧ (x ∈ {z} ∧ C ∈ [z /
x]B))) |
35 | | an12 772 |
. . . . . 6
⊢ (([z / x]x ∈ A ∧ (x ∈ {z} ∧ C ∈
[z / x]B))
↔ (x ∈ {z} ∧ ([z / x]x ∈ A ∧ C ∈ [z /
x]B))) |
36 | | elsn 3749 |
. . . . . . . 8
⊢ (x ∈ {z} ↔ x =
z) |
37 | | equcom 1680 |
. . . . . . . 8
⊢ (x = z ↔
z = x) |
38 | 36, 37 | bitri 240 |
. . . . . . 7
⊢ (x ∈ {z} ↔ z =
x) |
39 | 38 | anbi1i 676 |
. . . . . 6
⊢ ((x ∈ {z} ∧ ([z / x]x ∈ A ∧ C ∈
[z / x]B))
↔ (z = x ∧ ([z / x]x ∈ A ∧ C ∈
[z / x]B))) |
40 | 34, 35, 39 | 3bitri 262 |
. . . . 5
⊢ (([z / x]x ∈ A ∧ 〈x, C〉 ∈ ({z} ×
[z / x]B))
↔ (z = x ∧ ([z / x]x ∈ A ∧ C ∈
[z / x]B))) |
41 | 40 | exbii 1582 |
. . . 4
⊢ (∃z([z / x]x ∈ A ∧ 〈x, C〉 ∈ ({z} ×
[z / x]B))
↔ ∃z(z = x ∧ ([z / x]x ∈ A ∧ C ∈
[z / x]B))) |
42 | | sbequ12r 1920 |
. . . . . 6
⊢ (z = x →
([z / x]x ∈ A ↔
x ∈
A)) |
43 | 20 | equcoms 1681 |
. . . . . . . 8
⊢ (z = x →
B = [z / x]B) |
44 | 43 | eqcomd 2358 |
. . . . . . 7
⊢ (z = x →
[z / x]B =
B) |
45 | 44 | eleq2d 2420 |
. . . . . 6
⊢ (z = x →
(C ∈
[z / x]B
↔ C ∈ B)) |
46 | 42, 45 | anbi12d 691 |
. . . . 5
⊢ (z = x →
(([z / x]x ∈ A ∧ C ∈ [z /
x]B) ↔ (x
∈ A ∧ C ∈ B))) |
47 | 7, 46 | ceqsexv 2895 |
. . . 4
⊢ (∃z(z = x ∧ ([z / x]x ∈ A ∧ C ∈ [z /
x]B)) ↔ (x
∈ A ∧ C ∈ B)) |
48 | 41, 47 | bitri 240 |
. . 3
⊢ (∃z([z / x]x ∈ A ∧ 〈x, C〉 ∈ ({z} ×
[z / x]B))
↔ (x ∈ A ∧ C ∈ B)) |
49 | 32, 48 | syl6bb 252 |
. 2
⊢ (C ∈ V →
(〈x,
C〉 ∈ ∪x ∈ A ({x} ×
B) ↔ (x ∈ A ∧ C ∈ B))) |
50 | 4, 6, 49 | pm5.21nii 342 |
1
⊢ (〈x, C〉 ∈ ∪x ∈ A ({x} ×
B) ↔ (x ∈ A ∧ C ∈ B)) |