| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbequ2 | GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbequ2 | ⊢ (x = y → ([y / x]φ → φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 1649 | . 2 ⊢ ([y / x]φ ↔ ((x = y → φ) ∧ ∃x(x = y ∧ φ))) | |
| 2 | simpl 443 | . . 3 ⊢ (((x = y → φ) ∧ ∃x(x = y ∧ φ)) → (x = y → φ)) | |
| 3 | 2 | com12 27 | . 2 ⊢ (x = y → (((x = y → φ) ∧ ∃x(x = y ∧ φ)) → φ)) |
| 4 | 1, 3 | syl5bi 208 | 1 ⊢ (x = y → ([y / x]φ → φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-sb 1649 |
| This theorem is referenced by: stdpc7 1917 sbequ12 1919 dfsb2 2055 sbequi 2059 sbn 2062 sbi1 2063 mo 2226 mopick 2266 |
| Copyright terms: Public domain | W3C validator |