Step | Hyp | Ref
| Expression |
1 | | mo.1 |
. . . . . 6
⊢ Ⅎyφ |
2 | | nfv 1619 |
. . . . . 6
⊢ Ⅎy x = z |
3 | 1, 2 | nfim 1813 |
. . . . 5
⊢ Ⅎy(φ →
x = z) |
4 | 3 | nfal 1842 |
. . . 4
⊢ Ⅎy∀x(φ →
x = z) |
5 | | nfv 1619 |
. . . 4
⊢ Ⅎz∀x(φ →
x = y) |
6 | | equequ2 1686 |
. . . . . 6
⊢ (z = y →
(x = z
↔ x = y)) |
7 | 6 | imbi2d 307 |
. . . . 5
⊢ (z = y →
((φ → x = z) ↔
(φ → x = y))) |
8 | 7 | albidv 1625 |
. . . 4
⊢ (z = y →
(∀x(φ →
x = z)
↔ ∀x(φ →
x = y))) |
9 | 4, 5, 8 | cbvex 1985 |
. . 3
⊢ (∃z∀x(φ → x = z) ↔
∃y∀x(φ → x = y)) |
10 | 1 | nfs1 2044 |
. . . . . . . . 9
⊢ Ⅎx[y / x]φ |
11 | | nfv 1619 |
. . . . . . . . 9
⊢ Ⅎx y = z |
12 | 10, 11 | nfim 1813 |
. . . . . . . 8
⊢ Ⅎx([y / x]φ →
y = z) |
13 | | sbequ2 1650 |
. . . . . . . . 9
⊢ (x = y →
([y / x]φ →
φ)) |
14 | | ax-8 1675 |
. . . . . . . . 9
⊢ (x = y →
(x = z
→ y = z)) |
15 | 13, 14 | imim12d 68 |
. . . . . . . 8
⊢ (x = y →
((φ → x = z) →
([y / x]φ →
y = z))) |
16 | 3, 12, 15 | cbv3 1982 |
. . . . . . 7
⊢ (∀x(φ → x = z) →
∀y([y / x]φ →
y = z)) |
17 | 16 | ancli 534 |
. . . . . 6
⊢ (∀x(φ → x = z) →
(∀x(φ →
x = z)
∧ ∀y([y / x]φ → y = z))) |
18 | 3, 12 | aaan 1884 |
. . . . . 6
⊢ (∀x∀y((φ → x = z) ∧ ([y / x]φ →
y = z))
↔ (∀x(φ →
x = z)
∧ ∀y([y / x]φ → y = z))) |
19 | 17, 18 | sylibr 203 |
. . . . 5
⊢ (∀x(φ → x = z) →
∀x∀y((φ → x = z) ∧ ([y / x]φ →
y = z))) |
20 | | prth 554 |
. . . . . . 7
⊢ (((φ → x = z) ∧ ([y / x]φ →
y = z))
→ ((φ ∧ [y / x]φ) →
(x = z
∧ y =
z))) |
21 | | equtr2 1688 |
. . . . . . 7
⊢ ((x = z ∧ y = z) → x =
y) |
22 | 20, 21 | syl6 29 |
. . . . . 6
⊢ (((φ → x = z) ∧ ([y / x]φ →
y = z))
→ ((φ ∧ [y / x]φ) →
x = y)) |
23 | 22 | 2alimi 1560 |
. . . . 5
⊢ (∀x∀y((φ → x = z) ∧ ([y / x]φ →
y = z))
→ ∀x∀y((φ ∧ [y / x]φ) →
x = y)) |
24 | 19, 23 | syl 15 |
. . . 4
⊢ (∀x(φ → x = z) →
∀x∀y((φ ∧
[y / x]φ) →
x = y)) |
25 | 24 | exlimiv 1634 |
. . 3
⊢ (∃z∀x(φ → x = z) →
∀x∀y((φ ∧
[y / x]φ) →
x = y)) |
26 | 9, 25 | sylbir 204 |
. 2
⊢ (∃y∀x(φ → x = y) →
∀x∀y((φ ∧
[y / x]φ) →
x = y)) |
27 | | nfa2 1855 |
. . . 4
⊢ Ⅎy∀x∀y((φ ∧ [y / x]φ) →
x = y) |
28 | | sp 1747 |
. . . . . . . 8
⊢ (∀y((φ ∧
[y / x]φ) →
x = y)
→ ((φ ∧ [y / x]φ) →
x = y)) |
29 | 28 | exp3a 425 |
. . . . . . 7
⊢ (∀y((φ ∧
[y / x]φ) →
x = y)
→ (φ → ([y / x]φ → x = y))) |
30 | 29 | com3r 73 |
. . . . . 6
⊢ ([y / x]φ → (∀y((φ ∧
[y / x]φ) →
x = y)
→ (φ → x = y))) |
31 | 10, 30 | alimd 1764 |
. . . . 5
⊢ ([y / x]φ → (∀x∀y((φ ∧
[y / x]φ) →
x = y)
→ ∀x(φ →
x = y))) |
32 | 31 | com12 27 |
. . . 4
⊢ (∀x∀y((φ ∧
[y / x]φ) →
x = y)
→ ([y / x]φ →
∀x(φ →
x = y))) |
33 | 27, 32 | eximd 1770 |
. . 3
⊢ (∀x∀y((φ ∧
[y / x]φ) →
x = y)
→ (∃y[y / x]φ →
∃y∀x(φ → x = y))) |
34 | | alnex 1543 |
. . . 4
⊢ (∀y ¬
[y / x]φ ↔
¬ ∃y[y / x]φ) |
35 | 10 | nfn 1793 |
. . . . . 6
⊢ Ⅎx ¬ [y /
x]φ |
36 | 1 | nfn 1793 |
. . . . . 6
⊢ Ⅎy ¬ φ |
37 | | sbequ1 1918 |
. . . . . . . 8
⊢ (x = y →
(φ → [y / x]φ)) |
38 | 37 | equcoms 1681 |
. . . . . . 7
⊢ (y = x →
(φ → [y / x]φ)) |
39 | 38 | con3d 125 |
. . . . . 6
⊢ (y = x →
(¬ [y / x]φ →
¬ φ)) |
40 | 35, 36, 39 | cbv3 1982 |
. . . . 5
⊢ (∀y ¬
[y / x]φ →
∀x
¬ φ) |
41 | | pm2.21 100 |
. . . . . 6
⊢ (¬ φ → (φ → x = y)) |
42 | 41 | alimi 1559 |
. . . . 5
⊢ (∀x ¬
φ → ∀x(φ → x = y)) |
43 | | 19.8a 1756 |
. . . . 5
⊢ (∀x(φ → x = y) →
∃y∀x(φ → x = y)) |
44 | 40, 42, 43 | 3syl 18 |
. . . 4
⊢ (∀y ¬
[y / x]φ →
∃y∀x(φ → x = y)) |
45 | 34, 44 | sylbir 204 |
. . 3
⊢ (¬ ∃y[y / x]φ → ∃y∀x(φ → x = y)) |
46 | 33, 45 | pm2.61d1 151 |
. 2
⊢ (∀x∀y((φ ∧
[y / x]φ) →
x = y)
→ ∃y∀x(φ →
x = y)) |
47 | 26, 46 | impbii 180 |
1
⊢ (∃y∀x(φ → x = y) ↔
∀x∀y((φ ∧
[y / x]φ) →
x = y)) |