Proof of Theorem sbi1
Step | Hyp | Ref
| Expression |
1 | | sbequ2 1650 |
. . . . 5
⊢ (x = y →
([y / x]φ →
φ)) |
2 | | sbequ2 1650 |
. . . . 5
⊢ (x = y →
([y / x](φ →
ψ) → (φ → ψ))) |
3 | 1, 2 | syl5d 62 |
. . . 4
⊢ (x = y →
([y / x](φ →
ψ) → ([y / x]φ → ψ))) |
4 | | sbequ1 1918 |
. . . 4
⊢ (x = y →
(ψ → [y / x]ψ)) |
5 | 3, 4 | syl6d 64 |
. . 3
⊢ (x = y →
([y / x](φ →
ψ) → ([y / x]φ → [y / x]ψ))) |
6 | 5 | sps 1754 |
. 2
⊢ (∀x x = y →
([y / x](φ →
ψ) → ([y / x]φ → [y / x]ψ))) |
7 | | sb4 2053 |
. . 3
⊢ (¬ ∀x x = y →
([y / x]φ →
∀x(x = y → φ))) |
8 | | sb4 2053 |
. . . 4
⊢ (¬ ∀x x = y →
([y / x](φ →
ψ) → ∀x(x = y →
(φ → ψ)))) |
9 | | ax-2 7 |
. . . . . 6
⊢ ((x = y →
(φ → ψ)) → ((x = y →
φ) → (x = y →
ψ))) |
10 | 9 | al2imi 1561 |
. . . . 5
⊢ (∀x(x = y →
(φ → ψ)) → (∀x(x = y →
φ) → ∀x(x = y →
ψ))) |
11 | | sb2 2023 |
. . . . 5
⊢ (∀x(x = y →
ψ) → [y / x]ψ) |
12 | 10, 11 | syl6 29 |
. . . 4
⊢ (∀x(x = y →
(φ → ψ)) → (∀x(x = y →
φ) → [y / x]ψ)) |
13 | 8, 12 | syl6 29 |
. . 3
⊢ (¬ ∀x x = y →
([y / x](φ →
ψ) → (∀x(x = y →
φ) → [y / x]ψ))) |
14 | 7, 13 | syl5d 62 |
. 2
⊢ (¬ ∀x x = y →
([y / x](φ →
ψ) → ([y / x]φ → [y / x]ψ))) |
15 | 6, 14 | pm2.61i 156 |
1
⊢ ([y / x](φ → ψ) → ([y / x]φ → [y / x]ψ)) |