Step | Hyp | Ref
| Expression |
1 | | nfv 1619 |
. . . 4
⊢ Ⅎy(φ ∧ ψ) |
2 | | nfs1v 2106 |
. . . . 5
⊢ Ⅎx[y / x]φ |
3 | | nfs1v 2106 |
. . . . 5
⊢ Ⅎx[y / x]ψ |
4 | 2, 3 | nfan 1824 |
. . . 4
⊢ Ⅎx([y / x]φ ∧ [y / x]ψ) |
5 | | sbequ12 1919 |
. . . . 5
⊢ (x = y →
(φ ↔ [y / x]φ)) |
6 | | sbequ12 1919 |
. . . . 5
⊢ (x = y →
(ψ ↔ [y / x]ψ)) |
7 | 5, 6 | anbi12d 691 |
. . . 4
⊢ (x = y →
((φ ∧
ψ) ↔ ([y / x]φ ∧
[y / x]ψ))) |
8 | 1, 4, 7 | cbvex 1985 |
. . 3
⊢ (∃x(φ ∧ ψ) ↔ ∃y([y / x]φ ∧
[y / x]ψ)) |
9 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎyφ |
10 | 9 | mo3 2235 |
. . . . . 6
⊢ (∃*xφ ↔ ∀x∀y((φ ∧
[y / x]φ) →
x = y)) |
11 | | sp 1747 |
. . . . . . 7
⊢ (∀y((φ ∧
[y / x]φ) →
x = y)
→ ((φ ∧ [y / x]φ) →
x = y)) |
12 | 11 | sps 1754 |
. . . . . 6
⊢ (∀x∀y((φ ∧
[y / x]φ) →
x = y)
→ ((φ ∧ [y / x]φ) →
x = y)) |
13 | 10, 12 | sylbi 187 |
. . . . 5
⊢ (∃*xφ → ((φ ∧
[y / x]φ) →
x = y)) |
14 | | sbequ2 1650 |
. . . . . . . . 9
⊢ (x = y →
([y / x]ψ →
ψ)) |
15 | 14 | imim2i 13 |
. . . . . . . 8
⊢ (((φ ∧
[y / x]φ) →
x = y)
→ ((φ ∧ [y / x]φ) →
([y / x]ψ →
ψ))) |
16 | 15 | exp3a 425 |
. . . . . . 7
⊢ (((φ ∧
[y / x]φ) →
x = y)
→ (φ → ([y / x]φ → ([y / x]ψ → ψ)))) |
17 | 16 | com4t 79 |
. . . . . 6
⊢ ([y / x]φ → ([y / x]ψ → (((φ ∧
[y / x]φ) →
x = y)
→ (φ → ψ)))) |
18 | 17 | imp 418 |
. . . . 5
⊢ (([y / x]φ ∧
[y / x]ψ) →
(((φ ∧
[y / x]φ) →
x = y)
→ (φ → ψ))) |
19 | 13, 18 | syl5 28 |
. . . 4
⊢ (([y / x]φ ∧
[y / x]ψ) →
(∃*xφ →
(φ → ψ))) |
20 | 19 | exlimiv 1634 |
. . 3
⊢ (∃y([y / x]φ ∧
[y / x]ψ) →
(∃*xφ →
(φ → ψ))) |
21 | 8, 20 | sylbi 187 |
. 2
⊢ (∃x(φ ∧ ψ) → (∃*xφ → (φ → ψ))) |
22 | 21 | impcom 419 |
1
⊢ ((∃*xφ ∧ ∃x(φ ∧ ψ)) → (φ → ψ)) |