NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfae GIF version

Theorem nfae 1954
Description: All variables are effectively bound in an identical variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfae zx x = y

Proof of Theorem nfae
StepHypRef Expression
1 hbae 1953 . 2 (x x = yzx x = y)
21nfi 1551 1 zx x = y
Colors of variables: wff setvar class
Syntax hints:  wal 1540  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by:  nfnae  1956  sbequ5  2031  a16nf  2051  sbcom  2089  sbcom2  2114  exists1  2293  copsexg  4607
  Copyright terms: Public domain W3C validator