| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > simp2l | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2l | ⊢ ((φ ∧ (ψ ∧ χ) ∧ θ) → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 443 | . 2 ⊢ ((ψ ∧ χ) → ψ) | |
| 2 | 1 | 3ad2ant2 977 | 1 ⊢ ((φ ∧ (ψ ∧ χ) ∧ θ) → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: simpl2l 1008 simpr2l 1014 simp12l 1068 simp22l 1074 simp32l 1080 nnsucelr 4429 tfin11 4494 funprgOLD 5151 f1oiso2 5501 enadjlem1 6060 |
| Copyright terms: Public domain | W3C validator |