New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simp1r | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp1r | ⊢ (((φ ∧ ψ) ∧ χ ∧ θ) → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 447 | . 2 ⊢ ((φ ∧ ψ) → ψ) | |
2 | 1 | 3ad2ant1 976 | 1 ⊢ (((φ ∧ ψ) ∧ χ ∧ θ) → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: simpl1r 1007 simpr1r 1013 simp11r 1067 simp21r 1073 simp31r 1079 vtoclgft 2906 nndisjeq 4430 ncfindi 4476 nnadjoinpw 4522 nnpweq 4524 sfinltfin 4536 |
Copyright terms: Public domain | W3C validator |