NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simprrr GIF version

Theorem simprrr 741
Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.)
Assertion
Ref Expression
simprrr ((φ (ψ (χ θ))) → θ)

Proof of Theorem simprrr
StepHypRef Expression
1 simpr 447 . 2 ((χ θ) → θ)
21ad2antll 709 1 ((φ (ψ (χ θ))) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  nnsucelr  4429  ncfinraise  4482  ncfinlower  4484  tfin11  4494  sfindbl  4531  sfintfin  4533  sfinltfin  4536
  Copyright terms: Public domain W3C validator