NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ad2antll GIF version

Theorem ad2antll 709
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.)
Hypothesis
Ref Expression
ad2ant.1 (φψ)
Assertion
Ref Expression
ad2antll ((χ (θ φ)) → ψ)

Proof of Theorem ad2antll
StepHypRef Expression
1 ad2ant.1 . . 3 (φψ)
21adantl 452 . 2 ((θ φ) → ψ)
32adantl 452 1 ((χ (θ φ)) → ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  simprr  733  simprrl  740  simprrr  741  ax11eq  2193  ax11el  2194  tfinsuc  4499  sfinltfin  4536  vfinspsslem1  4551  vfinspclt  4553  enadjlem1  6060
  Copyright terms: Public domain W3C validator