NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sneqd GIF version

Theorem sneqd 3747
Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004.)
Hypothesis
Ref Expression
sneqd.1 (φA = B)
Assertion
Ref Expression
sneqd (φ → {A} = {B})

Proof of Theorem sneqd
StepHypRef Expression
1 sneqd.1 . 2 (φA = B)
2 sneq 3745 . 2 (A = B → {A} = {B})
31, 2syl 15 1 (φ → {A} = {B})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-sn 3742
This theorem is referenced by:  elp6  4264  pw1eqadj  4333  elimapw13  4947  dmsnopg  5067  fnunsn  5191  fsng  5434  fnressn  5439  fvsng  5447  freceq12  6312
  Copyright terms: Public domain W3C validator