New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fnunsn | GIF version |
Description: Extension of a function with a new ordered pair. (Contributed by NM, 28-Sep-2013.) |
Ref | Expression |
---|---|
fnunop.x | ⊢ (φ → X ∈ V) |
fnunop.y | ⊢ (φ → Y ∈ V) |
fnunop.f | ⊢ (φ → F Fn D) |
fnunop.g | ⊢ G = (F ∪ {〈X, Y〉}) |
fnunop.e | ⊢ E = (D ∪ {X}) |
fnunop.d | ⊢ (φ → ¬ X ∈ D) |
Ref | Expression |
---|---|
fnunsn | ⊢ (φ → G Fn E) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnunop.f | . . 3 ⊢ (φ → F Fn D) | |
2 | fnunop.x | . . . 4 ⊢ (φ → X ∈ V) | |
3 | fnunop.y | . . . 4 ⊢ (φ → Y ∈ V) | |
4 | opeq1 4578 | . . . . . . 7 ⊢ (x = X → 〈x, y〉 = 〈X, y〉) | |
5 | 4 | sneqd 3746 | . . . . . 6 ⊢ (x = X → {〈x, y〉} = {〈X, y〉}) |
6 | sneq 3744 | . . . . . 6 ⊢ (x = X → {x} = {X}) | |
7 | 5, 6 | fneq12d 5177 | . . . . 5 ⊢ (x = X → ({〈x, y〉} Fn {x} ↔ {〈X, y〉} Fn {X})) |
8 | opeq2 4579 | . . . . . . 7 ⊢ (y = Y → 〈X, y〉 = 〈X, Y〉) | |
9 | 8 | sneqd 3746 | . . . . . 6 ⊢ (y = Y → {〈X, y〉} = {〈X, Y〉}) |
10 | 9 | fneq1d 5175 | . . . . 5 ⊢ (y = Y → ({〈X, y〉} Fn {X} ↔ {〈X, Y〉} Fn {X})) |
11 | vex 2862 | . . . . . 6 ⊢ x ∈ V | |
12 | vex 2862 | . . . . . 6 ⊢ y ∈ V | |
13 | 11, 12 | fnsn 5152 | . . . . 5 ⊢ {〈x, y〉} Fn {x} |
14 | 7, 10, 13 | vtocl2g 2918 | . . . 4 ⊢ ((X ∈ V ∧ Y ∈ V) → {〈X, Y〉} Fn {X}) |
15 | 2, 3, 14 | syl2anc 642 | . . 3 ⊢ (φ → {〈X, Y〉} Fn {X}) |
16 | fnunop.d | . . . 4 ⊢ (φ → ¬ X ∈ D) | |
17 | disjsn 3786 | . . . 4 ⊢ ((D ∩ {X}) = ∅ ↔ ¬ X ∈ D) | |
18 | 16, 17 | sylibr 203 | . . 3 ⊢ (φ → (D ∩ {X}) = ∅) |
19 | fnun 5189 | . . 3 ⊢ (((F Fn D ∧ {〈X, Y〉} Fn {X}) ∧ (D ∩ {X}) = ∅) → (F ∪ {〈X, Y〉}) Fn (D ∪ {X})) | |
20 | 1, 15, 18, 19 | syl21anc 1181 | . 2 ⊢ (φ → (F ∪ {〈X, Y〉}) Fn (D ∪ {X})) |
21 | fnunop.g | . . . 4 ⊢ G = (F ∪ {〈X, Y〉}) | |
22 | 21 | fneq1i 5178 | . . 3 ⊢ (G Fn E ↔ (F ∪ {〈X, Y〉}) Fn E) |
23 | fnunop.e | . . . 4 ⊢ E = (D ∪ {X}) | |
24 | 23 | fneq2i 5179 | . . 3 ⊢ ((F ∪ {〈X, Y〉}) Fn E ↔ (F ∪ {〈X, Y〉}) Fn (D ∪ {X})) |
25 | 22, 24 | bitri 240 | . 2 ⊢ (G Fn E ↔ (F ∪ {〈X, Y〉}) Fn (D ∪ {X})) |
26 | 20, 25 | sylibr 203 | 1 ⊢ (φ → G Fn E) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1642 ∈ wcel 1710 Vcvv 2859 ∪ cun 3207 ∩ cin 3208 ∅c0 3550 {csn 3737 〈cop 4561 Fn wfn 4776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fn 4790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |