New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > snjust | GIF version |
Description: Soundness justification theorem for df-sn 3742. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
snjust | ⊢ {x ∣ x = A} = {y ∣ y = A} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2359 | . . 3 ⊢ (x = z → (x = A ↔ z = A)) | |
2 | 1 | cbvabv 2473 | . 2 ⊢ {x ∣ x = A} = {z ∣ z = A} |
3 | eqeq1 2359 | . . 3 ⊢ (z = y → (z = A ↔ y = A)) | |
4 | 3 | cbvabv 2473 | . 2 ⊢ {z ∣ z = A} = {y ∣ y = A} |
5 | 2, 4 | eqtri 2373 | 1 ⊢ {x ∣ x = A} = {y ∣ y = A} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |