New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqeq1 | GIF version |
Description: Equality implies equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq1 | ⊢ (A = B → (A = C ↔ B = C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2347 | . . . . . 6 ⊢ (A = B ↔ ∀x(x ∈ A ↔ x ∈ B)) | |
2 | 1 | biimpi 186 | . . . . 5 ⊢ (A = B → ∀x(x ∈ A ↔ x ∈ B)) |
3 | 2 | 19.21bi 1758 | . . . 4 ⊢ (A = B → (x ∈ A ↔ x ∈ B)) |
4 | 3 | bibi1d 310 | . . 3 ⊢ (A = B → ((x ∈ A ↔ x ∈ C) ↔ (x ∈ B ↔ x ∈ C))) |
5 | 4 | albidv 1625 | . 2 ⊢ (A = B → (∀x(x ∈ A ↔ x ∈ C) ↔ ∀x(x ∈ B ↔ x ∈ C))) |
6 | dfcleq 2347 | . 2 ⊢ (A = C ↔ ∀x(x ∈ A ↔ x ∈ C)) | |
7 | dfcleq 2347 | . 2 ⊢ (B = C ↔ ∀x(x ∈ B ↔ x ∈ C)) | |
8 | 5, 6, 7 | 3bitr4g 279 | 1 ⊢ (A = B → (A = C ↔ B = C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: eqeq1i 2360 eqeq1d 2361 eqeq2 2362 eqeq12 2365 eqtr 2370 eqsb1lem 2453 clelab 2474 neeq1 2525 pm13.18 2589 issetf 2865 sbhypf 2905 vtoclgft 2906 eqvincf 2968 pm13.183 2980 eueq 3009 mob 3019 euind 3024 reu6 3026 reu7 3032 reuind 3040 eqsbc1 3086 csbhypf 3172 uniiunlem 3354 snjust 3741 elprg 3751 elsncg 3756 sneqrg 3875 intab 3957 uniintsn 3964 dfiin2g 4001 pwadjoin 4120 preqr2g 4127 preq12bg 4129 el1c 4140 elxpk 4197 opkelopkabg 4246 opkelins2kg 4252 opkelins3kg 4253 opkelsikg 4265 sikss1c1c 4268 opkelidkg 4275 eladdc 4399 0nelsuc 4401 nnc0suc 4413 nndisjeq 4430 opklefing 4449 opkltfing 4450 leltfintr 4459 lefinlteq 4464 ltfintri 4467 tfineq 4489 tfin11 4494 0ceven 4506 evennn 4507 oddnn 4508 evennnul 4509 oddnnul 4510 sucevenodd 4511 sucoddeven 4512 evenodddisjlem1 4516 evenodddisj 4517 eventfin 4518 oddtfin 4519 nnadjoin 4521 nnadjoinpw 4522 tfinnn 4535 vfinncvntsp 4550 vfinspsslem1 4551 vfinspss 4552 dfphi2 4570 phi11lem1 4596 0cnelphi 4598 proj1op 4601 proj2op 4602 copsexg 4608 phialllem1 4617 elopab 4697 br1stg 4731 brsi 4762 elxpi 4801 opbrop 4842 br1st 4859 br2nd 4860 brswap2 4861 ideqg 4869 ideqg2 4870 funcnvuni 5162 fun11iun 5306 dffn5 5364 fvelrnb 5366 fvopab4t 5386 fvopab4g 5389 eqfnfv 5393 fnasrn 5418 foelrn 5426 foco2 5427 abrexco 5464 funiunfv 5468 dff13f 5473 f1fveq 5474 f1oiso 5500 brswap 5510 funsi 5521 oprabid 5551 eloprabga 5579 ov3 5600 ov6g 5601 ovelrn 5609 caovcan 5629 brsnsi 5774 brtxp 5784 op1st2nd 5791 fnpprod 5844 extd 5924 antid 5930 elqsg 5977 qsdisj 5996 ncseqnc 6129 ncspw1eu 6160 eqtc 6162 nc0le1 6217 taddc 6230 letc 6232 ce0t 6233 ce0lenc1 6240 muc0or 6253 csucex 6260 brcsuc 6261 addccan2nclem1 6264 addccan2nclem2 6265 nncdiv3 6278 nnc3n3p1 6279 spaccl 6287 spacind 6288 nchoicelem3 6292 nchoicelem12 6301 nchoicelem16 6305 frecsuc 6323 scancan 6332 |
Copyright terms: Public domain | W3C validator |