New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spim | GIF version |
Description: Specialization, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. The spim 1975 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) |
Ref | Expression |
---|---|
spim.1 | ⊢ Ⅎxψ |
spim.2 | ⊢ (x = y → (φ → ψ)) |
Ref | Expression |
---|---|
spim | ⊢ (∀xφ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spim.1 | . 2 ⊢ Ⅎxψ | |
2 | spim.2 | . . 3 ⊢ (x = y → (φ → ψ)) | |
3 | 2 | ax-gen 1546 | . 2 ⊢ ∀x(x = y → (φ → ψ)) |
4 | spimt 1974 | . 2 ⊢ ((Ⅎxψ ∧ ∀x(x = y → (φ → ψ))) → (∀xφ → ψ)) | |
5 | 1, 3, 4 | mp2an 653 | 1 ⊢ (∀xφ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: spime 1976 chvar 1986 spimv 1990 |
Copyright terms: Public domain | W3C validator |