New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > chvar | GIF version |
Description: Implicit substitution of y for x into a theorem. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by Mario Carneiro, 3-Oct-2016.) |
Ref | Expression |
---|---|
chvar.1 | ⊢ Ⅎxψ |
chvar.2 | ⊢ (x = y → (φ ↔ ψ)) |
chvar.3 | ⊢ φ |
Ref | Expression |
---|---|
chvar | ⊢ ψ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chvar.1 | . . 3 ⊢ Ⅎxψ | |
2 | chvar.2 | . . . 4 ⊢ (x = y → (φ ↔ ψ)) | |
3 | 2 | biimpd 198 | . . 3 ⊢ (x = y → (φ → ψ)) |
4 | 1, 3 | spim 1975 | . 2 ⊢ (∀xφ → ψ) |
5 | chvar.3 | . 2 ⊢ φ | |
6 | 4, 5 | mpg 1548 | 1 ⊢ ψ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: csbhypf 3172 opelopabsb 4698 |
Copyright terms: Public domain | W3C validator |