New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spime | GIF version |
Description: Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 3-Oct-2016.) |
Ref | Expression |
---|---|
spime.1 | ⊢ Ⅎxφ |
spime.2 | ⊢ (x = y → (φ → ψ)) |
Ref | Expression |
---|---|
spime | ⊢ (φ → ∃xψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spime.1 | . . . . 5 ⊢ Ⅎxφ | |
2 | 1 | nfn 1793 | . . . 4 ⊢ Ⅎx ¬ φ |
3 | spime.2 | . . . . 5 ⊢ (x = y → (φ → ψ)) | |
4 | 3 | con3d 125 | . . . 4 ⊢ (x = y → (¬ ψ → ¬ φ)) |
5 | 2, 4 | spim 1975 | . . 3 ⊢ (∀x ¬ ψ → ¬ φ) |
6 | 5 | con2i 112 | . 2 ⊢ (φ → ¬ ∀x ¬ ψ) |
7 | df-ex 1542 | . 2 ⊢ (∃xψ ↔ ¬ ∀x ¬ ψ) | |
8 | 6, 7 | sylibr 203 | 1 ⊢ (φ → ∃xψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: spimed 1977 spimev 1999 |
Copyright terms: Public domain | W3C validator |