New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spimvw | GIF version |
Description: Specialization. Lemma 8 of [KalishMontague] p. 87. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) |
Ref | Expression |
---|---|
spimvw.1 | ⊢ (x = y → (φ → ψ)) |
Ref | Expression |
---|---|
spimvw | ⊢ (∀xφ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1616 | . 2 ⊢ (¬ ψ → ∀x ¬ ψ) | |
2 | spimvw.1 | . 2 ⊢ (x = y → (φ → ψ)) | |
3 | 1, 2 | spimw 1668 | 1 ⊢ (∀xφ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: cbvalivw 1674 spw 1694 alcomiw 1704 |
Copyright terms: Public domain | W3C validator |