New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > alcomiw | GIF version |
Description: Weak version of alcom 1737. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017.) |
Ref | Expression |
---|---|
alcomiw.1 | ⊢ (y = z → (φ ↔ ψ)) |
Ref | Expression |
---|---|
alcomiw | ⊢ (∀x∀yφ → ∀y∀xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcomiw.1 | . . . . 5 ⊢ (y = z → (φ ↔ ψ)) | |
2 | 1 | biimpd 198 | . . . 4 ⊢ (y = z → (φ → ψ)) |
3 | 2 | cbvalivw 1674 | . . 3 ⊢ (∀yφ → ∀zψ) |
4 | 3 | alimi 1559 | . 2 ⊢ (∀x∀yφ → ∀x∀zψ) |
5 | ax-17 1616 | . 2 ⊢ (∀x∀zψ → ∀y∀x∀zψ) | |
6 | 1 | biimprd 214 | . . . . . 6 ⊢ (y = z → (ψ → φ)) |
7 | 6 | equcoms 1681 | . . . . 5 ⊢ (z = y → (ψ → φ)) |
8 | 7 | spimvw 1669 | . . . 4 ⊢ (∀zψ → φ) |
9 | 8 | alimi 1559 | . . 3 ⊢ (∀x∀zψ → ∀xφ) |
10 | 9 | alimi 1559 | . 2 ⊢ (∀y∀x∀zψ → ∀y∀xφ) |
11 | 4, 5, 10 | 3syl 18 | 1 ⊢ (∀x∀yφ → ∀y∀xφ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: hbalw 1709 ax7w 1718 |
Copyright terms: Public domain | W3C validator |