| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > spsbcd | GIF version | ||
| Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 2024 and rspsbc 3125. (Contributed by Mario Carneiro, 9-Feb-2017.) | 
| Ref | Expression | 
|---|---|
| spsbcd.1 | ⊢ (φ → A ∈ V) | 
| spsbcd.2 | ⊢ (φ → ∀xψ) | 
| Ref | Expression | 
|---|---|
| spsbcd | ⊢ (φ → [̣A / x]̣ψ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spsbcd.1 | . 2 ⊢ (φ → A ∈ V) | |
| 2 | spsbcd.2 | . 2 ⊢ (φ → ∀xψ) | |
| 3 | spsbc 3059 | . 2 ⊢ (A ∈ V → (∀xψ → [̣A / x]̣ψ)) | |
| 4 | 1, 2, 3 | sylc 56 | 1 ⊢ (φ → [̣A / x]̣ψ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1540 ∈ wcel 1710 [̣wsbc 3047 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 df-sbc 3048 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |