NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  spsbcd GIF version

Theorem spsbcd 3060
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 2024 and rspsbc 3125. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypotheses
Ref Expression
spsbcd.1 (φA V)
spsbcd.2 (φxψ)
Assertion
Ref Expression
spsbcd (φ → [̣A / xψ)

Proof of Theorem spsbcd
StepHypRef Expression
1 spsbcd.1 . 2 (φA V)
2 spsbcd.2 . 2 (φxψ)
3 spsbc 3059 . 2 (A V → (xψ → [̣A / xψ))
41, 2, 3sylc 56 1 (φ → [̣A / xψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540   wcel 1710  wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-v 2862  df-sbc 3048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator