NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  spsbc GIF version

Theorem spsbc 3059
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 2024 and rspsbc 3125. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
spsbc (A V → (xφ → [̣A / xφ))

Proof of Theorem spsbc
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 stdpc4 2024 . . . 4 (xφ → [y / x]φ)
2 sbsbc 3051 . . . 4 ([y / x]φ ↔ [̣y / xφ)
31, 2sylib 188 . . 3 (xφ → [̣y / xφ)
4 dfsbcq 3049 . . 3 (y = A → ([̣y / xφ ↔ [̣A / xφ))
53, 4syl5ib 210 . 2 (y = A → (xφ → [̣A / xφ))
65vtocleg 2926 1 (A V → (xφ → [̣A / xφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540   = wceq 1642  [wsb 1648   wcel 1710  wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-v 2862  df-sbc 3048
This theorem is referenced by:  spsbcd  3060  sbcth  3061  sbcthdv  3062  sbceqal  3098  sbcimdv  3108  csbexg  3147  csbiebt  3173
  Copyright terms: Public domain W3C validator