New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcth | GIF version |
Description: A substitution into a theorem remains true (when A is a set). (Contributed by NM, 5-Nov-2005.) |
Ref | Expression |
---|---|
sbcth.1 | ⊢ φ |
Ref | Expression |
---|---|
sbcth | ⊢ (A ∈ V → [̣A / x]̣φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcth.1 | . . 3 ⊢ φ | |
2 | 1 | ax-gen 1546 | . 2 ⊢ ∀xφ |
3 | spsbc 3059 | . 2 ⊢ (A ∈ V → (∀xφ → [̣A / x]̣φ)) | |
4 | 2, 3 | mpi 16 | 1 ⊢ (A ∈ V → [̣A / x]̣φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∈ wcel 1710 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 df-sbc 3048 |
This theorem is referenced by: iota4an 4359 |
Copyright terms: Public domain | W3C validator |